

 [image: License]
 [https://pypi.python.org/pypi/groundwork][image: Supported versions]
 [https://pypi.python.org/pypi/groundwork][image: https://readthedocs.org/projects/groundwork/badge/?version=latest]
 [https://readthedocs.org/projects/groundwork/][image: Travis-CI Build Status]
 [https://travis-ci.org/useblocks/groundwork][image: _images/badge.svg]
 [https://coveralls.io/github/useblocks/groundwork?branch=master][image: Code quality]
 [https://scrutinizer-ci.com/g/useblocks/groundwork/][image: PyPI Package latest release]
 [https://pypi.python.org/pypi/groundwork][image: _images/gw_slogan.png]

Welcome to groundwork

groundwork is a Python based microframework for highly reusable applications and their components.

Its functionality is based on exchangeable, well-documented and well-tested plugins and patterns.

It is designed to support any kind of a Python application: command line scripts, desktop programs or web applications.

groundwork enables applications to activate and deactivate plugins during runtime and to control dynamic plugin
behaviors like plugin status, used signals, registered commands and much more.

The functionality of plugins can easily be extended by the usage of inheritable patterns.

Thus, groundwork supports developers with time-saving solutions for:

	Command line interfaces

	Loose inter-plugin communication via signals and receivers

	Shared objects to provide and request content to and from other plugins

	Static and dynamic documents for an overall documentation

Additional, ready-to-use solutions can be easily integrated into groundwork applications by the usage of third-party
plugins and patterns from the groundwork community
(like groundwork-database [https://groundwork-database.readthedocs.io]
or groundwork-web [https://groundwork-web.readthedocs.io]). See Additional Packages for groundwork for more information.

Example

The following code defines a plugin with command line support and creates a groundwork application,
which activates the plugin:

from groundwork import App
from groundwork.patterns import GwCommandsPattern

class MyPlugin(GwCommandsPattern):
 def _init_(self, app, *args, **kwargs):
 self.name = "My Plugin"
 super().__init__(app, *args, **kwargs)

 def activate(self):
 self.commands.register(command='hello',
 description='prints "hello world"',
 function=self.greetings)

 def greetings(self):
 print("Hello world")

if __name__ == "__main__":
 my_app = App(plugins=[MyPlugin]) # Creates app and registers MyPlugin
 my_app.plugins.activate(["My Plugin"]) # Initialise and activates 'My Plugin'
 my_app.commands.start_cli() # Starts the command line interface

The following commands can be used on a command line now:

python my_app.py hello # Prints 'Hello world'
python my_app.py # Prints a list of available commands
python my_app.py hello -h # Prints syntax help for the hello command

Tutorial

For the case you wish a more use-case oriented introduction into groundwork, we have set up a
tutorial [https://useblocks.github.io/groundwork-tutorial] with a huge amount of code examples.

This tutorial starts with the groundwork basics, lets you create your first groundwork command line application, gives
introductions how to add database support and finally ends with your own groundwork based web application.

Beside groundwork itself, it also uses the community packages
groundwork-database [https://groundwork-database.readthedocs.io]
and groundwork-web [https://groundwork-web.readthedocs.io].

The tutorial is available under
useblocks.github.io/groundwork-tutorial [https://useblocks.github.io/groundwork-tutorial].

User’s Guide

	Foreword
	Challenges

	Goals

	Technical background

	Installation
	System-wide installation

	Virtual environment

	Quickstart
	Applications

	Plugins

	Patterns

	Architecture
	Definitions

	Example

	Application
	Configuration

	Plugin registration

	Plugin activation

	Plugin deactivation

	Handling errors

	Logging

	Plugins
	Registration

	Activation and Deactivation

	Development of own plugins

	Using patterns

	Logging

	Plugin dependencies

	Patterns
	Using patterns

	Developing own patterns

	Logging

	Signals and Receivers
	Use case: User creation

	Working with signals

	Working with receivers

	Signals and receivers on application level

	Commands
	Starting the CLI

	Registering commands

	Using arguments and options

	Unregister a command

	Shared Objects
	Registration

	Get/Access a shared object

	Unregister

	Documents
	Live example

	Registration

	Unregister document

	Using Jinja and RST

	Developing a document viewer

	Sphinx support

	Threads
	Registering threads

	Thread status and response

	Recipes
	Workflow

	List available recipes

	Building/Execute a recipe

	Creating own recipes

	Packaging and Installation
	Create a package

	Install a package

	Additional Packages for groundwork
	groundwork-database

	groundwork-web

	Contribute
	Running tests

	Documentation

API Reference

	API
	Application Object

	SignalsApplication

	Configuration

	PluginManagers

	Plugin Patterns

	Plugins

Changelog

	Changelog
	0.1.13

	0.1.12

Foreword

Challenges

The initial version of groundwork was created inside an environment of cross-company development teams, with
very different skills on Python and its ecosystem.

Main challenges were the needed understanding of already existing code, missing responsibilities for artefacts besides
the code (like tests and documentation) and a tight project plan, which never contained time slots needed to teach and update team
members about important changes on the code.

Besides these challenges on the project level, there were also a lot of challenges on code level when it came to
understanding architecture, databases, algorithms, interactions and more of a running application with dynamic and
extensible behavior.

Goals

groundwork was created to take most of these challenges and to provide easy, understandable and plugin-able solutions.

The groundwork team has defined goals, which shall be applicable for all groundwork based applications:

A plugin bundles everything

Besides the code itself, a plugin also provide tests, documentation and meta data for its functionality.

Like other application/plugin frameworks, groundwork is responsible to “glue” all plugin code together to a single
application.

But it also cares about test cases of a plugin and makes tests of all used plugins available inside a single
test suite. Furthermore, it also collects all plugin documentation and creates a single, overall documentation for
developers and users. The meta data of a plugin is collected as well and made available inside the documentation and - if
desired - also in the application.

Injections

To lower the learning curve, commonly used libraries and their core functions can directly be injected into
groundwork plugins by using groundwork patterns.

For instance: Instead of initialising and configuring Blinker [https://pythonhosted.org/blinker/]
for signals and Click [http://click.pocoo.org/latest] for command line interfaces by yourself, groundworks
provides self.signal.send("Yehaa") and self.commands.register(...) directly inside plugin classes.

By defining own patterns, it is very easy to provide team members additional injected functions. E.g.
self.web.route() for registering a web route or self.db.sql() to execute a SQL statement.

However, the library and its objects can still be made available and directly accessible to support uncommon or
not yet supported use cases.

Realtime documentation

Nowadays it’s really hard to get the big picture of an existing application. Normally only some kind of documentation
and the code itself are available as information source. However, the former is rarely well maintained and the
later gives you a structured, but too deep view which takes hours or even days to understand.

groundwork tries to retrieve and provide a lot of information from the executed code directly during runtime.
For instance, it is able to show registered and used signals or to create a list of available commands.

These information depends on the activated plugins, which may change during runtime and affect the
documentation as well.

Technical background

groundwork was created to glue code-snippets from various developers together and make their nested functions
easily available.

In Python this is commonly achieved by importing modules, initialising a class of them and storing the class instance
in a local or global variable.
However, these mechanism aren’t really dynamic and the relationship between different classes and objects is hard-coded,
without any chance to change it during runtime.

groundwork uses plugins, based on cooperative-multi-inheritance to load and manage needed
attributes and functions from reusable patterns.
It also enforces the usage of the groundwork GwBasePattern for all
plugins to make common attributes and functions available.

For more information about cooperative-multi-inheritance see:

	Raymond Hettinger - Super considered super! - PyCon 2015 [https://www.youtube.com/watch?v=EiOglTERPEo]

	Python docs for classes and inheritance [https://docs.python.org/3/tutorial/classes.html#multiple-inheritance]

Installation

Warning

groundwork does currently support Python3.4 or higher only.

Python2.x is not supported!

System-wide installation

You can use pip to install groundwork in your local python environment:

sudo pip install groundwork

On windows system sudo is not needed.

Virtual environment

A virtual environment allows you to install and test python packages without any affect on a system-wide installation.

If not done yet, use pip to install virtualenv:

sudo pip install virtualenv

Create a virtual environment in your preferred folder with:

virtualenv venv # venv will be the name of the folder. You may change it.

To activate it, run:

. venv/bin/activate

Or on windows:

venv\scripts\activate

After that your virtual environment is installed and activated.
Now you can install groundwork:

pip install groundwork

Quickstart

Applications

Create an app

Create a file named my_app.py and add the following code:

from groundwork import App

if __name__ == "__main__":
 my_app = App()
 my_app.plugins.activate(["GwPluginInfo"])
 my_app.commands.start_cli()

This code performs the following actions:

	It creates a groundwork application app via my_app = App()

	
	It activates the plugin GwPluginInfo, which is part of groundwork itself.

	
	During activation, GWPluginInfo registers a command called plugin_list by its own.

	It starts the command line interface

Run an app

Open a command line interface, change to folder, which contains my_app.py, and execute:

python my_app.py

This will start groundwork and its command line interface.

Because no command was added as parameter, groundwork complains about it.
To change this, simply add the needed command

python my_app.py plugin_list

This will print a list of all available plugins, including some helpful information about them.

Plugins

Activate registered plugins

Activating already registered plugins like GwPluginInfo is easy.
All you need to know is the name of a plugin.:

my_app.activate(["GwPluginInfo", "GwCommandsInfo", "GwSignalInfo"])

groundwork knows these names, because it automatically scans the used python environment for packages, which are
providing groundwork plugins. See Plugin registration for more details or Packaging and Installation for using
this mechanism for own plugins.

Create own plugins

The easiest way of creating a groundwork plugin is by defining a class, which inherits from
GwBasePattern.
But before activation, it also needs to be registered, what can be done during application initialisation:

from groundwork import App
from groundwork.patterns import GwBasePattern

class MyPlugin(GwBasePattern):
 def __init__(self, app, **kwargs):
 self.name = "My Plugin"
 super().__init__(app, **kwargs)

 def activate(self): pass

 def deactivate(self): pass

my_app = App(plugins=[MyPlugin]) # Register your plugin class
my_app.plugins.activate(["My Plugin"]) # And activate it

You can also use the plugin object itself to perform the activation:

Instead of
my_app = App(plugins=[MyPlugin])
my_app.activate(["My Plugin"])
my_app = App()
my_plugin = MyPlugin(app=my_app)
my_plugin.activate()

Note

If a plugin inherits from any pattern, GwBasePattern is no longer
needed as the pattern itself does already inherit from this class.

Warning

The __init__ routine of a plugin class must always set a name and call the next __init__ routine in the
inheritance chain (in this order!).

Also make sure that your __init__ can handle app as the first argument and
additional, optional keyword arguments.

If this is missed, the patterns and their objects are not initialized and configured the right way.

So always use:

def __init__(self, app, **kwargs):
 self.name = "My Plugin"
 super().__init__(app, **kwargs)

Patterns

Using patterns

Patterns are used to inject new functionality to a plugin. There are patterns for registering commands, generating
different types of documentation, activating web support and much more.

A plugin can inherit multiple patterns:

class MyPlugin(GwCommandPattern, GwDocumentPattern):
 def __init__(self, app, **kwargs):
 self.name = "My Plugin"
 super().__init__(app, **kwargs)

This code example gives MyPlugin functions to register new commands and new documents.

If your are using a coding environment with code completion, just type self. to see all available functions
, including the inherited ones.

Writing patterns

A pattern is more or less a plugin without any activation or deactivation function. Like plugins, it must
also inherit from GwBasePattern.

A pattern is allowed to multiply inherit from other patterns as well.

You can find an example with multiple inheritance in the Pattern Example Code.

Architecture

A groundwork application knows 3 levels of abstraction: applications, plugins and
patterns.

These three levels were chosen to reflect the need of functional and technical separation. Additionally, it allows
granular code reuse and recombination.

Definitions

Application

An application bundles several functionalities, which are provided by plugins.

Therefore, an application is a package of plugins and has one or several functional
focuses. Like a web app for weather services or a console script for text file manipulation.

Plugin

A plugin has a strongly user oriented functional focus. Examples are user account handling, error
monitoring or functions for viewing log files.

It may also provide some sort of user interface, like console commands or web pages.

If a plugin needs technical resources like a database connection, a web server or command registration, it needs to use
patterns.

A plugin can be activated and deactivated during application runtime.

Pattern

A pattern provides technical resources to plugins.
They are responsible for setting up database connections, providing APIs for command registration or web route
handling.

A plugin uses patterns by deriving from pattern classes. Several patterns can be invoked by using multi inheritance.
Thus, patterns are strongly coupled with related plugins during application runtime.

Patterns become automatically activated as soon as an application activates the first plugin that inherits from
the pattern. A pattern gets automatically deactivated, if all plugins are deactivated, which inherit from the pattern.
With plugins deriving from patterns, the plugin activation order becomes unimportant because resources provided
by patterns will already be registered on the app if the first plugin wants to use it. This is important for
functionality like database connections or web frameworks which are commonly only instantiated once but used
for multiple plugins.

Example

The following image shows an application example for a weather web service. The service has 3 main features:

	Provide weather information. Data source is a database.

	Allow user registration, in which users are stored to the database and then receive a welcome email.

	Error handling. Service administrators shall get emails if problems occur.

[image: groundwork architecture]
The 3 features are separated into 3 plugins having a use case related focus: weather storage,
user handling and error monitoring.

All plugins need a total of 2 technical resources: A database and a way to send emails.
These are realised by 2 different patterns: a database connection pattern and an email sending
pattern.

The application itself is configured to load the 3 plugins during startup. The related patterns are getting
loaded and configured automatically.

Code examples

The following code snippets give a first impression how such an architecture can be
realised.

patterns.py

The following code defines the 2 patterns for database connections and email sending:

from groundwork.patterns import GwBasePattern

class DatabasePattern(GwBasePattern):
 def __init__(self):
 self.database = Database() # Database has functions: store(), get()

class EmailPattern(GwBasePattern):
 def __init__(self):
 self.email = Email() # Email has functions: send()

plugins.py

The 3 features are realised by the following 3 plugins:

from .patterns import DatabasePattern, EmailPattern

class WeatherStorePlugin(DatabasePattern):
 def __init__(self, app, **kwargs):
 self.name = "Weather Store"
 super().__init__(app, **kwargs)

 def activate(self):
 self.database.store(MyWeatherData)

 def get_weather(location):
 return self.database.get(location)

 def deactivate(self):
 pass

class UserHandling(DatabasePattern, EmailPattern):
 def __init__(self, app, **kwargs):
 self.name = "User Handling"
 super().__init__(app, **kwargs)

 def register_user(self, username, email):
 self.database.store(User(username, email))
 self.email.send(email, "Welcome %s" % username)

 def deactivate(self):
 pass

class ErrorMonitoring(EmailPattern):
 def __init__(self, app, **kwargs):
 self.name = "Error Monitoring"
 super().__init__(app, **kwargs)

 def activate(self):
 self.admin = "admin@my_company.com"

 def error_detected(traceback):
 self.email.send(self.admin, "Error found! %s" % traceback)

 def deactivate(self):
 pass

app.py

The application itself only needs to load the three plugins:

from groundwork import App
from .plugins import WeatherStorePlugin, UserHandling, ErrorMonitoring

Load application and register plugins
my_app = App(plugins=[WeatherStorePlugin, UserHandling, ErrorMonitoring])

Activate plugins
my_app.activate(["Weather Store", "User Handling", "Error Monitoring"])

Application

The groundwork App is a container mostly for configurations, plugins/patterns and
their needed objects.

Most attributes are added during runtime by patterns, which need a single instance of an object per application.
For instance: A list of registered commands, a database connection object, a web application.

To initialise a groundwork application, simply do:

from groundwork import App

my_app = App()

Configuration

groundwork can load multiple configuration files during application initialisation. These values are available via
my_app.config.get("MY_CONFIG_PARAMETER").

It is also possible to reload the configuration or to extend it by additional configuration files during runtime:

from groundwork import App

my_app = App(config_files=["config1.py", "config2.py"]) # Load 2 config files
my_app.config.load(["config3.py"]) # Load a third config file

A configuration file must be python file, which defines variables on root level. Only variables with an uppercase name
are used for the groundwork configuration:

config1.py

import os

APP_NAME = "My awesome application" # Is used as config parameter

config_file_location = __file__ # Is not used as config parameter
APP_PATH = os.path.dirname(config_file_location) # Is used as config parameter

APP_PLUGINS = ["My Plugin", # Is used as config parameter
 "GwPluginInfo",
 "GwCommandInfo]

After application initialisation, the configuration can be used. For instance to activate needed plugins:

from groundwork import APP

my_app = App(config_files=["config1.py"])
my_app.plugins.activate(my_app.config.get("APP_PLUGINS"))

Plugin registration

Before a plugin can be activated for a groundwork application, it must be registered.

groundwork does this registration automatically for all python packages in the current python environment.
For not-packaged plugins, they must be registered by the application developer her/himself.

Packaged plugins

A packaged plugin is part of a python package, which provides a setup.py and was installed via
python setup.py install or related pip/easy_install commands in the current python environment.

The package must use the entry_point groundwork.plugin and provide a class for each entry_point. Example from
the groundwork package itself:

setup(
 name='groundwork',

 # A lot of other information....

 entry_points={
 'groundwork.plugin': [
 'gw_plugin_info = groundwork.plugins.gw_plugin_info:GwPluginInfo',
 'gw_signal_info = groundwork.plugins.gw_signal_info:GwSignalInfo',
 'gw_command_info = groundwork.plugins.gw_commands_info:GwCommandInfo'
]
 }
)

During application initialisation, groundwork registers all plugins, which are provided by this way automatically.
They can be activated after app initialisation:

from groundwork import App

my_app = App()
my_app.plugins.activate(["GwPluginInfo", "GwSignalInfo"])

Registration of own plugins

If a groundwork plugin is not part of a package and not made available via entry_point, it must be registered by
the application developer. This can be done during application initialisation or later:

from groundwork import App
from groundwork.patterns import GwBasePattern

class MyPlugin(GwBasePattern):
 def __init__(self, app, **kwargs):
 self.name = "My Plugin"
 super().__init__(app, **kwargs)

 def activate(self): pass

 def deactivate(self): pass

Registration during initialisation
my_app = App(plugins=[MyPlugin])

Registration after initialisation
from my_module import AnotherPlugin
my_app.plugins.classes.register([AnotherPlugin])

Activation
my_app.plugins.activate(["My Plugin", "AnotherPlugin"])

Plugin activation

Before a plugin registers its commands, signals or anything else, it must be activated.

groundwork supports two ways of activation:

	Activation by application

	Activation by plugin

Here is an example, which demonstrates both ways:

from groundwork import App
from groundwork.patterns import GwBasePattern

class MyPlugin(GwBasePattern):
 def __init__(self, app, **kwargs):
 self.name = "My Plugin"
 super().__init__(app, **kwargs)

 def activate(self): pass

 def deactivate(self): pass

Activation by application
my_app = App(plugins=[MyPlugin]) # Registration
my_app.plugins.activate(["My Plugin"]) # Activation

Activation by plugin
my_plugin2 = MyPlugin(app=my_app, name="MyPlugin2") # Registration
my_plugin2.activate() # Activation

Plugin deactivation

Like for plugin activation, also the plugin deactivation supports two ways of deactivating a plugin:

Follow up of the plugin activation example...

Deactivation by application
my_app.deactivate(["MyPlugin"])

Deactivation by plugin
my_plugin2.deactivate()

Handling errors

A plugin registration or activation can easily fail. Reasons may be bad code, missing dependencies,
already registered classes and more.

By default groundwork logs only a warning if a registration or activation fails.

You can ask groundwork to throw also an exception, if problems occur. This behavior can be activated by setting the
parameter strict=True during application initialisation:

from groundwork import App

class MyBadPlugin():
 pass

my_app = App(strict=True)
my_app.registers([MyBadPlugin]) # will throw an exception

my_app.strict = False
my_app.registers([MyBadPlugin]) # will log a warning only

Logging

A groundwork application provides its own logger object, which is available under my_app.log:

from groundwork import App

my_app = App()
my_app.log.info("Loading plugins")
my_app.log.debug("Activating Plugin X")

This logger is used by most application related objects. Plugins have their own logger, which is available
under self.log inside an plugin class.

Configuration

All loggers (application and plugins) can be configured by a configuration parameter called GROUNDWORK_LOGGING
inside a used configuration file.

The value of this parameter must be a dictionary. Its structure is described in the
python documentation for logging [https://docs.python.org/3.5/library/logging.config.html#logging.config.dictConfig].

Example of a configuration for groundwork logs:

GROUNDWORK_LOGGING = {
 'version': 1,
 'disable_existing_loggers': False,
 'formatters': {
 'standard': {
 'format': '%(asctime)s [%(levelname)s] %(name)s: %(message)s'
 },
 'extended': {
 'format': "%(levelname)-8s %(name)-40s - %(asctime)s - %(message)s"
 },
 'debug': {
 'format': "%(name)s - %(asctime)s - [%(levelname)s] - %(module)s:%(funcName)s(%(lineno)s) - %(message)s"
 },
 },
 'handlers': {
 'default': {
 'formatter': 'standard',
 'class': 'logging.StreamHandler',
 'level': 'DEBUG'
 },
 'console_stdout': {
 'formatter': 'extended',
 'class': 'logging.StreamHandler',
 'stream': sys.stdout,
 'level': 'DEBUG'
 },
 'file': {
 "class": "logging.handlers.RotatingFileHandler",
 "formatter": "debug",
 "filename": "logs/app.log",
 "maxBytes": 1024000,
 "backupCount": 3,
 'level': 'DEBUG'
 },
 'file_my_plugin': {
 "class": "logging.handlers.RotatingFileHandler",
 "formatter": "debug",
 "filename": "logs/my_plugin.log",
 "maxBytes": 1024000,
 "backupCount": 3,
 'level': 'DEBUG'
 },
 },
 'loggers': {
 '': {
 'handlers': ['default'],
 'level': 'WARNING',
 'propagate': True
 },
 'groundwork': {
 'handlers': ['console_stdout', 'file'],
 'level': 'INFO',
 'propagate': False
 },
 'MyPlugin': {
 'handlers': ['console_stdout', 'file_my_plugin'],
 'level': 'DEBUG',
 'propagate': False
 },
 }
}

Plugins

Plugins are used by groundwork to load specific functions into a groundwork application.

In most cases a plugin should have a functional focus, like providing some documentation about signals or providing
some commands to the user to handle specific tasks on data.

A plugin can be activated and deactivated during runtime. And it can be loaded from python packages or from own code.

The following rules apply for each groundwork plugin.

	A plugin contains code, documentation and tests.

	A plugin provides routines for activation and deactivation during runtime.

	A plugin inherits directly or indirectly from GwBasePattern.

During development of a plugin, patterns can be used to extend its functionality or grant access
to specific objects, like a database engine to perform database actions.

Registration

The registration of a plugin must happen by using the application:

from groundwork import App

my_app = App()
my_app.plugins.activate(["GwPluginInfo"])

For more information please read Plugin registration of the chapter Application.

Activation and Deactivation

Plugins can be activated and deactivated during runtime. There are two ways of doing this:

	By the activate()/
deactivate() function, accessible by my_app.plugins.activate() or
my_app.plugins.deactivate().

	By the activation/deactivation function of the plugin itself, accessible by my_plugin.activate() or
my_plugin.deactivate().

For a code example, please take a look into Plugin activation and Plugin deactivation of the application
documentation.

Development of own plugins

To start the development of own plugins, simply create a new class and inherit from
GwBasePattern:

from groundwork.patterns import GwBasePattern

class MyPlugin(GwBasePattern):
 def __init__(self, app, **kwargs):
 self.name = "My Plugin"
 super().__init__(app, **kwargs)

 def activate(self): pass

 def deactivate(self): pass

Warning

It is very important to call the __init__ routine of parent classes. Otherwise they can’t deliver functions
and objects, which you may need. Also no signals are registered, which inform interested functions when your
plugin gets activated or deactivated. So no automatic cleanup would happen, like erasing all registered
commands of your plugin.

Also make sure that your __init__ can handle app as the first argument and
additional, optional keyword arguments.

Provided variables

The groundwork GwBasePattern creates the following variables for your
plugin and makes them directly available:

	self.path: The absolute path of the python-file, which contains your plugin (directory + file name)

	self.dir: The absolute directory, which contains your plugin (directory only)

	self.file: The name of the file, which contains your plugin (file name only)

	self.version: An initial version (0.0.1), if this was not set by your plugin during initialisation

	self.active: True, if the plugin got activated.

	self.needed_plugins: Empty tuple, if it was not set by your plugin during initialisation

Using signals and receivers

You are free to add signals or connect receivers to them:

from groundwork.patterns import GwBasePattern

class MyPlugin(GwBasePattern):
 def __init__(self, app, **kwargs):
 self.name = "My Plugin"
 super().__init__(app, **kwargs)

 def activate(self):
 self.signals.register(signal="My signal",
 description="Informing about something")

 self.signals.connect(receiver="My signal receiver",
 signal="My signal",
 function=self.fancy_stuff,
 description="Doing some fancy stuff")

 def fancy_stuff(plugin, **kwargs):
 print("FANCY STUFF!!! " * 50)

For more details about signals, please read Signals and Receivers.

Note

Each plugin sends automatically signals when it gets activated or deactivated.
The used signals are: plugin_activate_pre, plugin_activate_post, plugin_deactivate_pre and plugin_deactivate_post.

Please see Signals and Receivers for more information.

Using patterns

Patterns can be used to extend your plugin with new functions and objects.

groundwork itself provides 6 patterns:

	GwBasePattern

	GwCommandsPattern

	GwDocumentsPattern

	GwRecipesPattern

	GwSharedObjectsPattern

	GwThreadsPattern

You can load multiple patterns into your plugin:

from groundwork.patterns import GwCommandsPattern, GwDocumentsPattern, GwSharedObjectsPattern

GwBasePattern is no longer needed, because the used patterns already inherit from it.
class MyPlugin(GwCommandsPattern, GwDocumentsPattern, GwSharedObjectsPattern):
 def __init__(self, app, **kwargs):
 self.name = "My Plugin"
 super().__init__(app, **kwargs)

 def activate(self):
 self.commands.register(...)
 self.documents.register(...)
 self.shared_objects.register(...)

For more information about these patterns, please read the related chapters: Commands, Documents,
Recipes, Shared Objects and Threads.

Logging

Each plugin has its own logger, which name is the name of the plugin. It is accessible via self.log inside a plugin
class:

from groundwork.patterns import GwBasePattern

class MyPlugin(GwBasePattern):
 def __init__(self, app, **kwargs):
 self.name = "My Plugin"
 super().__init__(app, **kwargs)
 self.log.info("Initialisation done for %s" % self.name)

 def activate(self):
 self.log.debug("Starting activation")
 self.log.info("Activation done")

For each logger, and therefore for each plugin, it is possible to register handlers to monitor specific plugins
and log messages in detail.

For instance: Store all messages of “My Plugin” inside a file called “my_plugin.log”.
All other messages go to “app.log”.

For details how to configure groundworks logging, please see logging configuration.

Plugin dependencies

A plugin can have dependencies to other plugins and it needs to be sure that these plugins are activated in the current
app.

Therefore a plugin can specify the names of needed plugins and groundwork cares about their activation:

from groundwork.patterns import GwBasePattern

class MyPlugin(GwBasePattern):
 def __init__(self, app, **kwargs):
 self.name = "My Plugin"
 self.needed_plugins = ("AnotherPlugin", "AndAnotherPlugin")
 super().__init__(app, **kwargs)

During plugin activation, groundwork does the following:

	Read in self.needed_plugins

	For each plugin name

	Check, if a plugin with this name exists in app.plugins (objects/instantiated plugins)

	If yes: activate it instantly (if not done yet)

	If no: check for plugin classes with this name in app.plugin.classes (classes, not instantiated)

	If yes: Instantiate and activate it

	If not: Throw error

Patterns

Patterns are used to extend the functionality of a plugin. So most patterns provides use-case specific functions
like register commands, store users and more.

Using patterns

The usage of a pattern is defined by a plugin during its development.
The plugin itself decides to inherit from one or multiple patterns:

from groundwork.patterns import GwCommandsPattern, GwDocumentsPattern, GwSharedObjects

class MyPlugin(GwCommandsPattern, GwDocumentsPattern): # Used Patterns
 def __init__(self, app, **kwargs):
 self.name = "My Plugin"
 self.super().__init__(app, **kwargs)

This inheritance can not be changed during runtime or via configuration. It’s hard coded inside a plugins code.

Developing own patterns

A pattern is more or less a plugin without any activation or deactivation function. Like plugins, it must
also inherit from GwBasePattern.

A pattern is allowed to multiply inherit from other patterns as well. Example:

from groundwork import App
from groundwork.patterns import GwCommandPattern, GwDocumentPattern

class MyPattern(GwCommandPattern, GwDocumentPattern):
 def __init__(self, app, **kwargs):
 super().__init__(app, **kwargs)

 def my_register(self, command_name, command_func):
 """ Registers and documents a new command"""
 self.commands.register(command_name, command_func, ...)
 self.documents.register(command_name, ...)

class MyPlugin(MyPattern):
 def __init__(self, app, **kwargs):
 self.name = "My Plugin"
 super().__init__(app, **kwargs)

 def activate(self):
 # Your new function
 self.my_register(command_name = "print_me", command_func = self.print_me)

 # But you also have access to all functions from
 # GwCommandPattern and GwDocumentPattern
 self.commands.register(...)
 self.documents.register(...)

 def print_me(self):
 print("I'm %s." % self.name)

my_app = App([MyPlugin])
my_app.activate(["My Plugin"])

Logging

Patterns are using the same logger as the plugin, which has inherit from this pattern. Example:

from groundwork import App
from groundwork.patterns import GwBasePattern

class MyPattern(GwBasePatter):
 def __init__(self, app, **kwargs):
 super().__init__(app, **kwargs)

 self.log.debug("Initialising pattern 'MyPattern'")

class MyPlugin(MyPattern):
 def __init__(self, app, **kwargs):
 self.name = "My Plugin"
 super().__init__(app, **kwargs)

 self.log.info("Initialising MyPlugin")

class AnotherPlugin(MyPattern):
 def __init__(self, app, **kwargs):
 self.name = "Another Plugin"
 super().__init__(app, **kwargs)

 self.log.info("Initialising AnotherPlugin")

my_app = App(plugins=[MyPlugin, AnotherPlugin])
my_app.plugins.activate(["My Plugin", "Another Plugin"])

my_app.log.info("Start application")

The output of this would be like:

MyPlugin DEBUG Initialising pattern 'MyPattern'
MyPlugin INFO Initialising MyPlugin
AnotherPlugin DEBUG Initialising pattern 'MyPattern'
AnotherPlugin INFO Initialising MyPlugin
groundwork INFO Start application

For more details about logging see Plugin Logging
and Application Logging

Signals and Receivers

Signals and receivers are used to loosely connect plugins. Every plugin can register and send signals.
And every plugin can register a receiver for a specific signal.

A signal is defined by its unique name and should have a meaningful description.

A receiver is connected to a specific signal and is defined additionally by an unique name, a function
and a description.

groundwork also stores the plugin, which has registered a signal or a receiver.

Note

groundwork is internally using the library Blinker [https://pythonhosted.org/blinker/] and made most
of its functions available.

Use case: User creation

Let’s imagine we have 3 active plugins:

	GwUserManager - For creating users in database

	GwEMail - For sending e-mails

	GwChat - For sending chat messages

If a user gets created, the GwUSerManager sends the signal “User created” and adds the created user object.

Both, GwEMail and GwChat, have registered receivers to the signal “User created”. So GwEMail gets called, it fetches
the e-mail address from the attached user object and sends a “Welcome” message to the user.
GwChat gets also called and sends a chat message to the chat room of the development team and informs them that a
new user has been created.

Working with signals

Signals and receivers can be used inside plugins, without the need of using any specific pattern.
As groundwork itself uses signals for some internal processes, signals and receivers are already part of
GwBasePattern.

Register a signal

To register a signal, simply use the register() function
of self.signals:

from grundwork.patters import GwBasePattern

class MyPlugin(GwBasePattern):
 def __init__(self, app, **kwargs):
 self.name = "My Plugin"
 super().__init__(app, **kwargs)

 def activate(self):
 self.signals.register("my_signal", "this is my first signal")

You are able to get all signals, which were registered by your plugin by
using get():

...
def activate(self):
 self.signals.register("my_signal", "this is my first signal")
 my_signals = self.signals.get() # Returns a dictionary
 my_single_signal = self.signals.get(signal="my_signal") # Return Signal or None

Send a signal

Sending a signal can be done by every plugin, even if it has not registered any signals or receivers.

However, a signal, which shall be send, must already be registered. Otherwise an exception is thrown.:

...
def activate(self):
 self.signals.register(signal ="my_signal",
 description="this is my first signal")

 self.signals.send("my_signal") # Will work
 self.signals.send("not_registered__signal") # Will throw an exception

Note

Also the application can send signals by using send(), like
my_app.signals.send("my_signal", plugin=self).

Signals installed by groundwork

groundwork installs 4 signals during start up:

	plugin_activate_pre

	plugin_activate_post

	plugin_deactivate_pre

	plugin_activate_post

This signals are called automatically if a plugin gets activated or deactivated.

The difference between pre and post is that pre is called before any action is done by the plugin.
And post is called after the plugin did some action for de/activation.

Working with receivers

Any plugin can register a receiver for any signal. Even if the signal itself will never be send or even registered.

Register a receiver

To register a receiver, a callback function is needed, which gets executed, if the receiver gets called.

Registration of receiver is done by the function connect():

from grundwork.patters import GwBasePattern

class MyPlugin(GwBasePattern):
 def __init__(self, app, **kwargs):
 self.name = "My Plugin"
 super().__init__(app, **kwargs)

 def activate(self):
 self.signals.connect(receiver="My signal receiver",
 signal="My signal",
 function=self.fancy_stuff,
 description="Doing some fancy")

 def fancy_stuff(plugin, **kwargs):
 print("FANCY STUFF!!! " * 50)

The used function must accept as first parameter the sender/plugin, which send the signal.
After this multiple, optional keyword arguments must be accepted as well.

The parameter sender can be used during registration to receive signals only from specific senders/plugins.

Best practice: Pattern clean up

Lets say, a pattern provides a function to register web-routes. During activation, the plugin registers some of them.
But during deactivation is forgets to unregister them, so that they are still registered and available.

The pattern should register to plugin_deactivate_post and make sure that everything gets unregistered.

Example:

class GwWebPattern(GwBasePattern):
 def __init__(self, app, **kwargs):
 self.signals.connect(receiver="%s_web_route_deactivation" % self.name,
 signal="plugin_deactivate_post",
 function=self.__deactivate_commands,
 description="Deactivate commands for %s" % self.name,
 sender=self) # We only need signals from this plugin

 def __deactivate_web_routes(self, plugin, *args, **kwargs):
 web_routes = self.web_routes.get()
 for web_route in web_routes.keys():
 self.web_routes.unregister(web_route)

Unregister a receiver

To disconnect a receiver from a signal, use the disconnect()
function:

class MyPlugin(GwBasePattern):
 def __init__(self, app, **kwargs):
 self.name = "My Plugin"
 super().__init__(app, **kwargs)

 def activate(self):
 self.signals.connect(receiver="%s_my_deactivation" % self.name, ...)

 def deactivate(self):
 self.signals.disconnect("%s_my_deactivation" % self.name)

Signals and receivers on application level

All signals and receivers can be accessed on application level via
get():

from groundwork import App

my_app = App()
my_app.signals.register("app_signal", "signal from application", plugin=app)
signals = my_app.signals.get()

It is also possible to register new signals and receivers. But inside the application an additional parameter
called plugin is necessary.
This parameter gets set automatically inside plugins. However on application level this must be set by
the developer.

Commands

Commands are used to provide access to different function via a command line interface (CLI).

groundwork cares automatically about CLI setup, help messages and command arguments.

However the command line interface must be started by the application itself.

Starting the CLI

To start the cli, be sure that at least one plugin gets activated, which is using the pattern
GwCommandsPattern.

After application initialisation and plugin activations,
start_cli() must be called:

from groundwork import App
from groundword.plugins import GwCommandInfo

my_app = App()
my_app.plugins.activate(["GwCommandInfo"])
my_app.commands.start_cli()

Registering commands

To register commands, a plugin must inherit from GwCommandsPattern
and use the function register().

from groundwork.patterns import GwCommandsPattern

class MyPlugin(GwCommandsPattern):
 def __init__(self, app, **kwargs)
 self.name = "My Plugin"
 super().__init__(app, **kwargs)

 def activate(self):
 self.commands.register(command="my_command",
 description="executes something",
 function=self.my_command,
 params=[])

 def my_command(self, plugin, **kwargs):
 print("Yehaaa")

Using arguments and options

groundworks’s command line support is based on click [http://click.pocoo.org/].

For arguments and options, groundwork is using the definition and native classes of click:

	Arguments [http://click.pocoo.org/5/api/#click.Argument] are positional parameters to a command

	Options [http://click.pocoo.org/5/api/#click.Option] are usually optional value on a command.

To use them, you have to pass instances of them to the params parameter of the function
register().

from groundwork.patterns import GwCommandsPattern
from click import Argument, Option

class MyPlugin(GwCommandsPattern):
 def __init__(self, app, **kwargs)
 self.name = "My Plugin"
 super().__init__(app, **kwargs)

 def activate(self):
 self.commands.register(command="my_command",
 description="executes something",
 function=self.my_command,
 params=[Option(("--force", "-f"),
 required=False,
 help="Will force something...",
 default=False,
 is_flag=True)])

 def my_command(self, plugin, force, **kwargs):
 if force:
 print("FORCE Yehaaa")
 else:
 print("Maybe Yehaaa")

For detailed parameter description, please take a look into the documentation of click [http://click.pocoo.org/] for
arguments [http://click.pocoo.org/5/api/#click.Argument] and
options [http://click.pocoo.org/5/api/#click.Option]

Unregister a command

A command can also be unregistered during runtime.

Simply use unregister() and pass the name of
the command:

...

def deactivate(self):
 self.commands.unregister("my_command")

Shared Objects

Shared objects are used to provide or access objects to or from other plugins.

As example, a plugin may be responsible for creating and updating users by setting up a database and make some tests
before any change happens. It could provide a shared object, which functions allow other plugins to create
users quite easily without the need to know all the details (database, tests, …).

There are no restrictions for a shared object, it can be any python object.

Note

As a shared object can be anything, you should be sure that this object is really good documented for other
plugin developers.

And if you access a shared object, you should also make some tests to guarantee that the shared object behaves
like expected.

Registration

Like for commands or signals, there is also a
register() function for shared objects:

from groundwork.patterns import GwSharedObjectsPattern

class MyPlugin(GwSharedObjectsPattern):
 def __init__(self, app, **kwargs)
 self.name = "My Plugin"
 super().__init__(app, **kwargs)

 self.my_shared_object = {"name": "shared"
 "name2": "object"}

 def activate(self):
 self.shared_objects.register(name="my_shared_object",
 description="A shared object of My Plugin",
 obj=self.my_shared_object)

Get/Access a shared object

	There are 2 functions, to access a shared object:

	
	get()

	access()

get() returns the complete shared object including registered meta data like name, description and plugin.
It may also return a dictionary of shared objects, if no name was given.
The search is performed on plugin level only, so there is no possibility to access shared objects of other plugins
via get()

access() returns the object only, without any meta data. It can be used to access a single shared object only.
A name must be given and the search is performed on application level:

from groundwork.patterns import GwSharedObjectsPattern

class MyPlugin(GwSharedObjectsPattern):
 ...

 def activate(self):
 self.shared_objects.register(name="my_shared_object",
 description="A shared object of My Plugin",
 obj=self.my_shared_object)

class MyPlugin2(GwSharedObjectsPattern):
 ...

 def some_function(self):
 # Will work
 obj = self.shared_objects.access("my_shared_object")

 # The following will not work as "my_shared_object" was not registered by this plugin
 # get() only works on plugin level!
 shared_object = self.shared_objects.get("my_shared_object")

 # But if access to shared object meta data is needed, you can use the application to get it.
 shared_object = self.app.shared_objects.get(name="my_shared_object")
 obj = shared_object.obj

Unregister

Use unregister() to unregister a
shared object:

...
def deactivate(self):
 self.shared_objects.unregister("my_shared_object")

Warning

Unregistration of a shared object may be tricky, as other plugins may have already stored a reference to this
object. Therefore as a plugin developer do not store an external shared object in your own plugin class. Try to
safely request it via access()
every time you need access on it.

Documents

Documents are used to describe functions and usage of a plugin to an end-user.

Their output is independent, so that plugins can collect them and create documentations in different formats, like
console output, html pages or whatever is needed.

groundwork documents support Jinja [http://jinja.pocoo.org/] and rst [http://docutils.sourceforge.net/rst.html].
Based on this, they are not static and can be easily used to document
dynamic behaviors of an application. For instance to provide a list of available commands.

Live example

groundwork provides an easy console viewer for its basic_app. It is part of the
GwDocumentsInfo plugin.

After installation of groundwork, simply type the following in a console window:

groundwork doc

Use N and P to navigate. X to quit.

Registration

To register a document, a plugin must inherit from GwDocumentsPattern
and call the register() function:

from groundwork.patterns import GwDocumentsPattern

class My_Plugin(GwDocumentsPattern):
 def __init__(self, app, **kwargs):
 self.name = "My Plugin"
 super().__init__(app, **kwargs)

 def activate(self):
 my_content = """
 My Plugin
 =========
 Application name: {{app.name}}
 Plugin name: {{plugin.name}}
 """
 self.documents.register(name="my_document",
 content=my_content,
 description="Provides information about 'My Plugin'")

Unregister document

To unregister a document, you must use
unregister():

...
def deactivate(self):
 self.documents.unregister("my_document")

Using Jinja and RST

Jinja [http://jinja.pocoo.org/] and rst [http://docutils.sourceforge.net/rst.html] are powerful, wide used
and well documented libraries for creating intelligent and beautiful documents.

Jinja

Jinja [http://jinja.pocoo.org/] is template engine and allows a developer to use variables and loops inside
a text document (besides a lot of more awesome stuff).

groundwork provides the application object as app and the plugin object, which has registered the document, as
plugin to each template:

JINJA template

Application name: {{ app.name }}

{% if app.plugins.get()|count > 5 %}
 Wohooow, we have a lot of plugins!
{% else %}
 Ok, we have some plugins.
{% endif %}

{# get() provides a dict, so we use items() to iterate over it #}
{% for key, plugin in app.plugins.get().items() %}
 name: plugin.name
{% endfor %}

The template engine must be executed by the plugin, which provides a viewer to these documents. And the execution
should be done directly before the document gets presented to the user.

rst

Restructured Text [http://docutils.sourceforge.net/rst.html] is used to give your document some sort of a layout.
For instance add titles and chapters, make some words strong and add some links.

rst is so generic, that it can be used to build pdf documents, html webpages, epub (an ebook format) and much more.

A famous rst based documentation framework is Sphinx [http://www.sphinx-doc.org/]

For a quick introduction, please read
Quick reStructuredText [http://docutils.sourceforge.net/docs/user/rst/quickref.html].

Developing a document viewer

A viewer for the groundwork documents must care about the following functions:

	Render the Jinja [http://jinja.pocoo.org/] template string.

	Transform rst-content to the needed output.

Step 1: Render Jinja

Step 1 can be done using the Jinja template and its
from_string() [http://jinja.pocoo.org/docs/dev/api/#jinja2.Environment.from_string] command:

from jinja2 import Environment

... # App initialisation, plugin activation, ...

document = my_app.documents.get("my example document")
rendered_doc = Environment().from_string(document.content).render(app=my_app, plugin=document.plugin))

It is important to provide 2 parameters to the jinja template:

	app: the current application object

	plugin: the plugin, which has registered the current document

Step 2: Transform rst

The second step depends on the needed output format. You will find a wide range of rst supports for different
programming languages. A good starting point is a list of rst supporting libraries and tools in this
stackoverflow answer [http://stackoverflow.com/questions/2746692/restructuredtext-tool-support].

However, the following example will make html from an already rendered, rst structured document content:

from docutils.core import publish_parts

... # App initialisation, plugin activation, jinja rendering, ...

output = publish_parts(rendered_doc, writer_name="html")['html_body']

publish_parts() renders the rst string and provides several groups of html areas.
Based on this it is very easy to get the complete html tree or the body content only. Which would be really helpful,
if a document should be integrated into an already existing html frame.

Supported areas are: body_prefix, fragment, html_subtitle, header, version, meta, stylesheet, subtitle,
html_head, body_pre_docinfo, head, html_body, body, html_prolog, title, docinfo, html_title,
whole, body_suffix, head_prefix, footer, encoding.

For details of publish_parts() and its supported part names, please take a look into the
official documentation [http://docutils.sourceforge.net/docs/api/publisher.html#publish-parts-details].

Sphinx support

Sphinx [http://www.sphinx-doc.org/] is a documentation builder, which takes static, rst based files and generates
websites, PDFs and more out of it. For instance, this documentation is using sphinx.

As sphinx supports physical files on a hard disk only, it can not integrate with groundwork documents directly.

Luckily the groundwork plugin GwDocumentsInfo provides the
command doc_write to store the content of all registered documents of an application in a directory.

Before it writes the files, the command will give you an overview about what will happen and asks for a final
confirmation.

Examples:

On a command line

groundwork doc_write ../temp # Writes rst documents to given, relative path.

groundwork doc_write /home/user/temp # Writes rst documents to the given, absolute path.

groundwork doc_write ./temp -h # Writes HTML documents.

groundwork doc_write ./temp -o # Does not exit, if given directory is not empty.

groundwork doc_write ./temp -q # Does not ask for final confirmation. Most needed by automation scripts.

groundwork doc_write ./temp -o -q -h # All options together...

After export, you can use the generated rst files as normal input files for sphinx. For instance you can add them
to a .. toctree:: of your index.rst.

Note

The output filename of a document is the document name in lowercase. Also all whitespaces are removed.
For instance: “My Great Document” becomes “mygreatdocument.rst”

Threads

Threads are used to allow functions to run in background and in parallel to the application, so that these functions
do not block the execution of the app.

This is very helpful when you have long-running tasks (e.g. file operations) but your app must still be able to response
to user input very quickly (like a running webserver).

Registering threads

To register threads, a plugin must inherit from GwThreadsPattern
and use the function register().

from groundwork.patterns import GwThreadsPattern

class MyPlugin(GwThreadsPattern):
 def __init__(self, app, **kwargs)
 self.name = "My Plugin"
 super().__init__(app, **kwargs)

 def activate(self):
 my_thread = self.threads.register(name="my_thread",
 description="run something",
 function=self.my_thread)

 my_thread.run()

 def my_thread(self, plugin, **kwargs):
 print("Yehaaa")

The registered function must have two arguments: self and plugin.

As the function gets not executed in the context of the plugin class, but in the context of a threading class,
self can not help to get access to your plugin.

Therefore we need the argument plugin, which contains the plugin, which has registered the thread.

Thread status and response

Because threads are running in parallel to the normal execution, you can not simply catch the response value of
my_thread.run(). Following code does not work:

response = my_thread.run() # response will be None, because my_thread is still running

Instead you have to wait and monitor the thread by your own:

while my_thread.running:
 pass # Do nothing
response = my_thread.response

But again, this code would block your application.

Another approach would be to let your thread-function send a signal as last action.
Now you are able to define a receiver, which can catch the response.

Recipes

Recipes are used to generate directories and files based on given user input.

They are most used to speed up the set up of

	New Python packages

	New groundwork projects

	New groundwork applications, plugins or patterns.

	New own projects

Besides folder structures and needed files, they can also be used to provide project/company specific values for
some preconfiguration. These values may be:

	Contact details of project leader or IT administrators.

	Common links to general documentation like IT security rules or project handbook.

	Source and integrations of corporate designs like css files or office templates.

	Company wide used libraries and their ready-to-use integration

	Configurations for external IT services, like continuous integration systems and bug trackers.

	Whatever is needed…

Recipes makes it possible to start relevant coding in less than 30 seconds after a new project was set up. Without
missing any rules, designs, integrations, checks or whatever is required for the current project.

Note

groundwork recipes are based on cookiecutter [https://cookiecutter.readthedocs.io/en/latest/] and supports every
function of it. To get a deep understandig of what is possible with groundwork recipes, you should take a look
into cookiecutter’s documentation [https://cookiecutter.readthedocs.io/en/latest/] as well.

Workflow

So, what happens if a recipe gets executed? Here is the workflow:

	Run groundwork recipe_build gw_package.
gw_package is provided by groundwork, but can be replaced by any other recipe.

	The user gets asked on command line interface for some variable inputs.

	The recipe gets executed and uses the user’s input to create folders and files with input related names.

	In most cases the input is also used to become part of some files. For instance a README file may contain the
author’s name after generation.

List available recipes

groundwork knows all available recipes of a groundwork application. And if this app has loaded the Gw Recipe
Builder plugin, it provides the command recipe_list to get a list of all registered recipes.

The groundwork application itself already has some usable recipes. Just execute the following to get a complete list:

groundwork recipe_list

recipe gw_package

At least you can see a recipe called gw_package. This recipe creates a ready-to-use, groundwork based Python
package. Including an example groundwork application and plugin, configured
sphinx project [http://www.sphinx-doc.org/en/stable/] for documentation,
configured test cases with pytest [http://doc.pytest.org/en/latest/]
and a test environment based on tox [https://tox.readthedocs.io/en/latest/],
travis [https://travis-ci.org/] support, …

Building/Execute a recipe

To build/execute a recipe simply open a command line interface and move to the directory, where the initial recipe
folder shall be created. Then execute:

groundwork recipe_build RECIPE_NAME

For instance
groundwork recipe_build gw_package

Based on the recipe, you may get asked some questions, which mostly affects the naming of files and directories.

After the last question is answered, groundwork executes the recipe and everything gets created. After this there
should be a new folder inside your current working directory.

Creating own recipes

Registration

	Own recipes must be registered by a plugin, which needs to give the following data during registration:

	
	name of the recipe

	absolute path of the recipe directory

	description of the recipe

	final words, which will be printed after an recipe was executed (optional)

See the following code from the RecipeBuilder plugin to get an example:

class GwRecipesBuilder(GwCommandsPattern, GwRecipesPattern):
 def __init__(self, *args, **kwargs):
 self.name = self.__class__.__name__
 super().__init__(*args, **kwargs)

 def activate(self):
 ...
 self.recipes.register("gw_package",
 os.path.abspath(os.path.join(os.path.dirname(__file__), "../recipes/gw_package")),
 description="Groundwork basic package. Includes places for "
 "apps, plugins, patterns and recipes.",
 final_words="Recipe Installation is done.\n\n"
 "For installation run: 'python setup.py develop' \n"
 "For documentation run: 'make html' inside doc folder "
 "(after installation!)\n\n"
 "For more information, please take a look into the README file "
 "to know how to go on.\n"
 "For help visit: https://groundwork.readthedocs.io\n\n"
 "Have fun with your groundwork package.")

Structure

A recipe must follow the rules of cookiecutter [https://cookiecutter.readthedocs.io/en/latest/]. Therefore it needs to have the following structure:

/
|-- cookiecutter.json
|
|-- {{ cookiecutter.project_name}}
| |
| |-- other directories/files, which will be copied.
|
|-- other directories/files, which will NOT be copied

Note

It is important to have a cookiecutter.json file, as well as a single root-directory, which name is surrounded by
{{ }}.

cookiecutter.json

The cookiecutter.json file is used as configuration file and must hold a json string, which defines all needed
parameters for the recipe setup.

All these parameters can be used and access in directory / file names as well as in file content.

Structure

The following example for a cookiecutter.json file comes from the RecipeBuilder plugin:

{
 "full_name": "My Name",
 "github_user" : "{{cookiecutter.full_name.lower().replace(' ', '_') }}",
 "email": "{{cookiecutter.github_user}}@provider.com",
 "project_name": "My Package",
 "project_slug": "{{ cookiecutter.project_name.lower().replace(' ', '_') }}",
 "github_project_name": "{{cookiecutter.project_slug}}",
 "project_app": "{{cookiecutter.project_slug}}_app",
 "project_plugin": "{{cookiecutter.project_slug}}_plugin",
 "project_short_description": "Package for hosting groundwork apps and plugins like {{cookiecutter.project_app}} or {{cookiecutter.project_plugin}}.",
 "test_folder": "tests",
 "test_prefix": "test_",
 "version": "0.1.0",
 "license": ["MIT license", "BSD license", "ISC license", "Apache Software License 2.0", "GNU General Public License v3", "Not open source"]
}

Usage

The parameters from the configuration files are all accessible by using {{cookiecutter.PARAMETER}}, wherever you
want to use this value:

	Directory names

	File names

	File content

	cookiecutter.json

Note

As the parameters are also accessible in the cookiecutter.json file, you are free to manipulate an input and use
it as default value for the next parameter. For instance: The project name can be used as python package name,
by removing all whitespaces and make it lowercase. Example: “project_package”:
{{ cookiecutter.project_name.lower().replace(‘ ‘, ‘_’)
}}”.

Using Jinja

Jinja [http://jinja.pocoo.org/] statements can be used to manipulate/modify inputs or make decisions out of them.
For instance: Based on the chosen license, the content of a file called LICENSE could be changed by:

{% if cookiecutter.license == MIT %}
Using MTI license

{% else if cookiecutter.license == BSD %}
Using BSD license

{% else %}
Using a private license

{% endif %}

Packaging and Installation

The distribution of plugins, patterns and even applications
can easily be done by using
solutions from Python’s packaging ecosystem [https://packaging.python.org/].
For packaging the library setuptools [https://setuptools.readthedocs.io/en/latest/] is recommend.
For package installation, the wide known tool pip [https://pip.pypa.io/en/stable/] should be used.

Create a package

You can add as many plugins, patterns and even applications to a single python package as you like.

All you need is a file called setup.py in the root folder of your package. Example:

from setuptools import setup, find_packages

setup(
 name='my_package',
 version="0.1,
 url='http://my_package.readthedocs.org',
 license='MIT',
 author='me',
 author_email='me@me.com',
 description="My awesome package for doing hot stuff",
 long_description="A longer description of my awesome package",
 packages=find_packages(exclude=['ez_setup', 'examples', 'tests']),
 include_package_data=True,
 platforms='any',
 install_requires=["groundwork", "Another_Package"],
 entry_points={
 'console_scripts': ["my_app my_package.my_app:start_app"],
 'groundwork.plugin': [
 'my_plugin = my_package.my_plugin:MyPlugin',
 'my_plugin_2" = my_package.my_plugin_2:MyPlugin2']
 }
)

For more details, take a look into the
Developer’s Guide of setuptools [https://setuptools.readthedocs.io/en/latest/setuptools.html#developer-s-guide]
or read one of the many tutorials about setup.py on the internet.

entry_points

Entry points [http://setuptools.readthedocs.io/en/latest/pkg_resources.html?highlight=entry_point#entry-points] are
used to “advertise” Python objects for use by other distributions.

groundwork uses them to find plugins in installed packages, without the need to use some hard coded imports like
from another_package import PluginX.

Therefore groundwork knows all packaged plugins, which are available in system path of the currently used python
interpreter. These plugins can be used by activation, without any need to register or import them:

from groundwork import App

my_app = App()

my_app.activate("GwPluginsInfo")
GwPluginsInfo is provided by an entry_point inside the groundwork package

Note

During activation, the plugins are identified by their names. So the plugin name must be known, which is not
necessarily the plugin class name.

The entry_point of a plugin must provide a class, which inherits directly or indirectly from
GwBasePattern:

setup.py from groundwork package

from setuptools import setup, find_packages

setup(
 name='groundwork',
 ...
 entry_points={
 'groundwork.plugin': [
 'gw_plugins_info = groundwork.plugins.gw_plugins_info:GwPluginsInfo',
]
 }
)

Package structure

The following structure is recommended for packaging multiple plugins, patters and applications:

my_package
|
|-- setup.py
|
|-- my_package
| |
| |-- applications
| | |-- my_app
| | |-- my_app.py
| |
| |-- patterns
| | |-- my_pattern
| | |-- my_pattern.py
| |
| |-- plugins
| |-- my_plugin
| | |-- my_plugin.py
| |
| |-- my_plugin_2
| |-- my_plugin_2.py
|
|-- docs
| |-- index.rst
| |-- my_app.rst
| |-- my_pattern.rst
| |-- my_plugin.rst
| |-- my_plugin_2.rst
|
|-- tests
 |-- test_my_app.py
 |-- test_my_pattern.py
 |-- test_my_plugin.py
 |-- test_my_plugin_2.py

Install a package

Local packages

If you store your package locally and do not use PyPI [https://pypi.python.org/pypi] for distribution,
you need to use your setup.py file for all installation scenarios.

During development

During development it is recommend to install a package in development mode on your current virtual environment:

python setup.py develop

This lets you make changes on your code without the need to reinstall your package after each code change.
This must be done only, if you make some changes to the setup.py file.

Final installation

To finally install your package inside the current used python environment, use install:

python setup.py install

This will copy all files to your python environment and new changes on your plugin do not have any impact on the
installed package.

PyPi

PyPI [https://pypi.python.org/pypi] can be used to share your package globally and allows users to use
pip [https://pip.pypa.io/en/stable/] for installation:

pip install my_package

The usage of PyPi is already explained in some great tutorials. A short selection:

	Python Packaging: Publishing on PyPi [http://python-packaging.readthedocs.io/en/latest/minimal.html]

	Peter Downs: How to submit a package to PyPI [http://peterdowns.com/posts/first-time-with-pypi.html]

Additional Packages for groundwork

groundwork-database

groundwork-database [https://groundwork-database.readthedocs.io] provides plugins and patterns to store and manage
database, database tables and the stored data.

It is based on SQLAlchemy [http://www.sqlalchemy.org/] and therefore supports a bunch of common sql based databases.

Visit https://groundwork-database.readthedocs.io for more information.

groundwork-web

groundwork-web [https://groundwork-web.readthedocs.io] supports the creation and management of web applications.
It manages servers, routes, contexts and more.

Technically it is based on Flask [http://flask.pocoo.org/] and all known flask extensions can be used to extend its
functionality.

It also has some patterns to easily create admin or REST interfaces based on given database tables.

Visit https://groundwork-web.readthedocs.io for more information.

Contribute

Running tests

Before tests can be executed, you have to install the test dependencies of groundwork:

pip install -r test-requirements.txt

Then to run groundwork’s own tests, open a command line interface, change to groundwork/tests and run:

py.test --flake8

pytest and Flake8

groundwork is using pytest [http://docs.pytest.org/en/latest/] for its tests.

For these tests, the following plugins are recommended:

	pytest-flake8 [https://pypi.python.org/pypi/flake8/1.6.1]

	pytest-sugar [https://pypi.python.org/pypi/pytest-sugar]

pytest and exception chains

pytest seems to show the traceback of last raised exception only.
In some cases this is not really helpful, as the location of last raised exception may not be the place, where you need
to fix something.

E.g. if a plugin raises an exception during plugin activation, the pluginmanager will catch this and raises
it’s own exception. pytest will only guide you to the pluginmanager, but not to the plugin activation routine itself.

groundwork raises exceptions always with the “from e” statement (e.g. raise Exception(“Ohh no”) from e).
A normal python traceback would show this exception chain. pytest unluckily does not, if it is not configured to do so.

To activate the default python traceback, start pytest with the following parameter:

py.test --tb=native

Deviations from common standards

Maximum line length

The code of groundwork is written with a maximum line length of 120 characters per line.
This value is also used for flake8 configuration in the file setup.cfg.

Documentation

groundwork is using sphinx for documentation building.

To build the documentation you need to have all documentation requirements installed:

pip install -r doc-requirements.txt

Then just run the following inside groundwork/docs to get a html documentation:

make html

groundwork sphinx theme

groundwork has its own theme for sphinx html documentations. It’s free and was created to give
groundwork related packages a common look.

Code and some instructions can be found inside the github project of gw-sphinx-themes [https://github.com/useblocks/gw-sphinx-themes].

API

Application Object

	
class groundwork.App(config_files=None, plugins=None, strict=False)

	Application object for a groundwork app.
Loads configurations, configures logs, initialises and activates plugins and provides managers.

	Performed steps during start up:

	
	load configuration

	configure logs

	get valid groundwork plugins

	activate configured plugins

	Parameters

	
	config_files (list of str) – List of config files, which shall be loaded

	plugins (Plugin-Classes, based on GwBasePattern) – List of plugins, which shall be registered

	strict – If true, Exceptions are thrown, if a plugin can not be initialised or activated.

	
_configure_logging(logger_dict=None)

	Configures the logging module with a given dictionary, which in most cases was loaded from a configuration
file.

If no dictionary is provided, it falls back to a default configuration.

See Python docs [https://docs.python.org/3.5/library/logging.config.html#logging.config.dictConfig] for more information.

	Parameters

	logger_dict – dictionary for logger.

	
config = None

	Instance of ConfigManager.
Used to load different configuration files and create a common configuration object.

	
log = None

	logging object for sending log messages. Example:

from groundwork import App
my_app = App()
my_app.log.debug("Send debug message")
my_app.log.error("Send error....")

	
name = None

	Name of the application. Is configurable by parameter “APP_NAME” of a configuration file.

	
path = None

	Absolute application path. Is configurable by parameter “APP_PATH” of a configuration file.
If not given, the current working directory is taken.
The path is used to calculate absolute paths for tests, documentation and much more.

	
plugins = None

	Instance of PluginManager- Provides functions to load, activate and

	
signals = None

	Instance of SignalsApplication. Provides functions to register and fire

SignalsApplication

	
class groundwork.signals.SignalsApplication(app)

	Signal and Receiver management class on application level.
This class is initialised once per groundwork application object.

Provides functions to register and send signals. And to connect receivers to signals.

	Parameters

	app (GwApp) – The groundwork application object

	
connect(receiver, signal, function, plugin, description='', sender=None)

	Connect a receiver to a signal

	Parameters

	
	receiver (str) – Name of the receiver

	signal (str) – Name of the signal. Must already be registered!

	function – Callable functions, which shall be executed, of signal is send.

	plugin – The plugin objects, which connects one of its functions to a signal.

	description – Description of the reason or use case, why this connection is needed.
Used for documentation.

	sender – If set, only signals from this sender will be send to ths receiver.

	
disconnect(receiver)

	Disconnect a receiver from a signal.
Signal and receiver must exist, otherwise an exception is thrown.

	Parameters

	receiver – Name of the receiver

	
get(signal=None, plugin=None)

	Get one or more signals.

	Parameters

	
	signal (str) – Name of the signal

	plugin (GwBasePattern) – Plugin object, under which the signals where registered

	
get_receiver(receiver=None, plugin=None)

	Get one or more receivers.

	Parameters

	
	receiver (str) – Name of the signal

	plugin (GwBasePattern) – Plugin object, under which the signals where registered

	
receivers = None

	Dictionary of registered receivers. Dictionary key is the registered receiver name.
Value is an instance of Receiver.

	
register(signal, plugin, description='')

	Registers a new signal.

	Parameters

	
	signal – Unique name of the signal

	plugin – Plugin, which registers the new signal

	description – Description of the reason or use case, why this signal is needed.
Used for documentation.

	
send(signal, plugin, **kwargs)

	Sends a signal for the given plugin.

	Parameters

	
	signal (str) – Name of the signal

	plugin (GwBasePattern) – Plugin object, under which the signals where registered

	
signals = None

	Dictionary of registered signals. Dictionary key is the registered signal name.
Value is an instance of Signal.

	
unregister(signal)

	Unregisters an existing signal

	Parameters

	signal – Name of the signal

	
class groundwork.signals.Signal(name, plugin, namespace, description='')

	Groundwork signal class. Used to store name, description and plugin.

This information is mostly used to generated overviews about registered signals and their send history.

	Parameters

	
	name (str) – Name of the signal

	namespace – Namespace of the signal. There is one per groundwork app.

	description (str) – Additional description for the signal

	plugin (GwBasePattern) – The plugin, which registered this signal

	
class groundwork.signals.Receiver(name, signal, function, plugin, namespace, description='', sender=None)

	Subscriber class, which stores information for documentation purposes.

	Parameters

	
	name (str) – Name of the Subscriber

	signal (str) – Signal name(s)

	namespace – Namespace of the signal. There is one per groundwork app.

	function – Callable function, which gets executed, if signal is sent.

	plugin (GwBasePattern) – Plugin object, which registered the subscriber

	description (str) – Additional description about the subscriber.

Configuration

ConfigManager

	
class groundwork.configuration.configmanager.ConfigManager(config_files=[])

	Loads different configuration files and sets their attributes as attributes of its own instance.

A configuration file must be an importable python file.

Only uppercase attributes are loaded. Everything else is ignored. Example:

import os
APP_NAME = "My APP" # Is used
APP_PATH = os.path.abspath(".") # Is used
app_test = "test" # Is NOT used
MY_OWN_VAR = "nice" # Is used

	
config = None

	An instance of Config for storing all
configuration parameters.

	
load(config_files)

	Creates a configuration instance from class Config from all
files in self.files and set the dictionary items as attributes of of this instance.

	Returns

	Instance of Config

Config

	
class groundwork.configuration.configmanager.Config

	Stores all configuration parameters and handles access to it.

	Example::

	import groundwork
my_app = groundwork.App(config_files=[“my_config.py”])
param = my_app.config.get(“MY_PARAM”, default=”Not set”)

my_app.config.set(“MY_PARAM_2, value=12345)
param_2 = my_app.config.get(“MY_PARAM_2”)

	
get(name, default=None)

	Returns an existing configuration parameter.
If not available, the default value is used.

	Parameters

	
	name – Name of the configuration parameter

	default – Default value, if parameter is not set

	
set(name, value, overwrite=False)

	Sets a new value for a given configuration parameter.

If it already exists, an Exception is thrown.
To overwrite an existing value, set overwrite to True.

	Parameters

	
	name – Unique name of the parameter

	value – Value of the configuration parameter

	overwrite (boolean) – If true, an existing parameter of name gets overwritten without warning or exception.

PluginManagers

The pluginmanager module cares about the management of plugin status and their changes between status.

There are two manager classes for managing plugin related objects.

	PluginManager: Cares about initialised Plugins, which can be activated and deactivated.

	PluginClassManager: Cares about plugin classes, which are used to create plugins.

A plugin class can be reused for several plugins. The only thing to care about is the naming of a plugin.
This plugin name must be unique inside a groundwork app and can be set during plugin initialisation/activation.

PluginManager

	
class groundwork.pluginmanager.PluginManager(app)

	PluginManager for searching, initialising, activating and deactivating groundwork plugins.

	
_register_initialisation(plugin_instance)

	Internal functions to perform registration actions after plugin load was successful.

	
activate(plugins=[])

	Activates given plugins.

This calls mainly plugin.activate() and plugins register needed resources like commands, signals or
documents.

If given plugins have not been initialised, this is also done via _load().

	Parameters

	plugins (list of strings) – List of plugin names

	
classes = None

	Instance of PluginClassManager.
Handles the registration of plugin classes, which can be used to create new plugins during runtime.

	
deactivate(plugins=[])

	Deactivates given plugins.

A given plugin must be activated, otherwise it is ignored and no action takes place (no signals are fired,
no deactivate functions are called.)

A deactivated plugin is still loaded and initialised and can be reactivated by calling activate() again.
It is also still registered in the PluginManager and can be requested via get().

	Parameters

	plugins (list of strings) – List of plugin names

	
exist(name)

	Returns True if plugin exists.
:param name: plugin name
:return: boolean

	
get(name=None)

	Returns the plugin object with the given name.
Or if a name is not given, the complete plugin dictionary is returned.

	Parameters

	name – Name of a plugin

	Returns

	None, single plugin or dictionary of plugins

	
initialise(clazz, name=None)

	

	
initialise_by_names(plugins=None)

	Initialises given plugins, but does not activate them.

This is needed to import and configure libraries, which are imported by used patterns, like GwFlask.

After this action, all needed python modules are imported and configured.
Also the groundwork application object is ready and contains functions and objects, which were added
by patterns, like app.commands from GwCommandsPattern.

The class of a given plugin must already be registered in the PluginClassManager.

	Parameters

	plugins (list of strings) – List of plugin names

	
is_active(name)

	Returns True if plugin exists and is active.
If plugin does not exist, it returns None

	Parameters

	name – plugin name

	Returns

	boolean or None

PluginClassManager

	
class groundwork.pluginmanager.PluginClassManager(app)

	Manages the plugin classes, which can be used to initialise and activate new plugins.

Loads all plugin classes from entry_point “groundwork.plugin” automatically during own initialisation.
Provides functions to register new plugin classes during runtime.

	
_get_plugins_by_entry_points()

	Registers plugin classes, which are in sys.path and have an entry_point called ‘groundwork.plugin’.
:return: dict of plugin classes

	
exist(name)

	Returns True if plugin class exists.
:param name: plugin name
:return: boolean

	
get(name=None)

	Returns the plugin class object with the given name.
Or if a name is not given, the complete plugin dictionary is returned.

	Parameters

	name – Name of a plugin

	Returns

	None, single plugin or dictionary of plugins

	
register(classes=[])

	Registers new plugins.

The registration only creates a new entry for a plugin inside the _classes dictionary.
It does not activate or even initialise the plugin.

A plugin must be a class, which inherits directly or indirectly from GwBasePattern.

	Parameters

	classes (list) – List of plugin classes

	
register_class(clazz, name=None, entrypoint_name=None, distribution_path=None, distribution_key=None, distribution_version=None)

	

Plugin Patterns

GwBasePattern

gw_base_pattern provides all basic classes and functions, which are needed by any kind of groundwork plugin or
pattern.

It mostly cares about the correct activation and deactivation. Including sending signals to inform
other patterns or plugins about status changes of a plugin.

	
class groundwork.patterns.gw_base_pattern.GwBasePattern(app, name=None, *args, **kwargs)

	Base pattern class for all plugins and patterns.

Usage:

from groundwork.patterns import GwBasePattern

class MyPlugin(GwBasePattern):
 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

 def activate():
 self.signals.register("MySignal", "My description about signal)

 def deactivate():
 self.signals.unregister("MySignal")

	Parameters

	
	app (groundwork.App.) – groundwork application object, for which the plugin shall be initialised.

	name – Unique name. Normally set by plugin.

	
activate()

	Must be overwritten by the plugin class itself.

	
app = None

	groundwork application instance. Access it inside a plugin via self.app.

	
deactivate()

	Must be overwritten by the plugin class itself.

	
log = None

	A logger, especially created for this plugin. Usage inside a plugin: self.log.warn("WARNING!!").

The logger name is the same as the plugin name. Therefor it is possible to configure the application logging
to show log messages of a specif plugin only. See Logging

	
needed_plugins = None

	Variable for storing dependencies to other plugins.
Tuple must contains needed plugin names.
needed_plugins = (“MyPlugin”, “MyPlugin2)

	
signals = None

	Instance of SignalsPlugin.
Provides functions to register and manage signals and retrievers.

All action takes place in the context of this plugin. For instance a self.signals.get() will return
signals of this plugin only. To get all signals of an application, please use self.app.signals.get().

	
class groundwork.patterns.gw_base_pattern.SignalsPlugin(plugin)

	Signal and Receiver management class on plugin level.
This class gets initiated once per plugin.

Mostly delegates function calls to the groundwork.signals.SignalListApplication instance on application
level.

	Parameters

	plugin (GwBasePattern) – The plugin, which wants to use signals

	
connect(receiver, signal, function, description, sender=None)

	Connect a receiver to a signal

	Parameters

	
	receiver (str) – Name of the receiver

	signal (str) – Name of the signal. Must already be registered!

	function – Callable functions, which shall be executed, of signal is send.

	description – Description of the reason or use case, why this connection is needed.
Used for documentation.

	
disconnect(receiver)

	Disconnect a receiver from a signal.
Receiver must exist, otherwise an exception is thrown.

	Parameters

	receiver – Name of the receiver

	
get(signal=None)

	Returns a single signal or a dictionary of signals for this plugin.

	
get_receiver(receiver=None)

	Returns a single receiver or a dictionary of receivers for this plugin.

	
register(signal, description)

	Registers a new signal.
Only registered signals are allowed to be send.

	Parameters

	
	signal – Unique name of the signal

	description – Description of the reason or use case, why this signal is needed.
Used for documentation.

	
send(signal, **kwargs)

	Sends a signal for the given plugin.

	Parameters

	signal (str) – Name of the signal

GwCommandPattern

	
class groundwork.patterns.gw_commands_pattern.GwCommandsPattern(*args, **kwargs)

	Bases: groundwork.patterns.gw_base_pattern.GwBasePattern

Adds a commandline interface to a groundwork app and allows plugins to register own commands.

The functionality is based on click: http://click.pocoo.org/5/

	To register command parameters, you have to create instances of click.Option or click.Argument manually and

	add them to the register-parameter “params”

Example

from groundwork import GwCommandsPattern
from click import Option

class MyPlugin(GwCommandsPattern)

 def activate(self):
 self.commands.register(command="my_command",
 description="Help for my command",
 params=[Option(("--test", "-t"), help="Some
 dummy text")])

 def my_command(self, my_test):
 print("Command executed! my_test=%s" % my_test)

For a complete list of configurable options, please take a look into the related click documentation of
Option [https://github.com/pallets/click/blob/c8e21105ebeb824c06c929bdd74c41eed776e956/click/core.py#L1419] and
Argument [https://github.com/pallets/click/blob/c8e21105ebeb824c06c929bdd74c41eed776e956/click/core.py#L1687]

Starting the command line interface

Groundwork does not start automatically the command line interface. This step must be done by the application
developer. Example

from groundwork import GwApp

gw_app = GwApp(plugins=["MyCommandPlugin"])
gw_app.activate(plugins=["MyCommandPlugin"])
gw_app.commands.start_cli()

	
activate()

	Must be overwritten by the plugin class itself.

	
commands = None

	Instance of CommandsListPlugin.
Provides functions to register and manage commands for a command line interface.

	
deactivate()

	Must be overwritten by the plugin class itself.

	
GwCommandsPattern.commands

	

	
class groundwork.patterns.gw_commands_pattern.CommandsListPlugin(plugin)

	
	
get(name=None)

	Returns commands, which can be filtered by name.

	Parameters

	name (str) – name of the command

	Returns

	None, single command or dict of commands

	
register(command, description, function, params=[])

	Registers a new command for a plugin.

	Parameters

	
	command – Name of the command

	description – Description of the command. Is used as help message on cli

	function – function reference, which gets invoked if command gets called.

	params – list of click options and arguments

	Returns

	command object

	
unregister(command)

	Unregisters an existing command, so that this command is no longer available on the command line interface.
This function is mainly used during plugin deactivation.

	Parameters

	command – Name of the command

	
class groundwork.patterns.gw_commands_pattern.CommandsListApplication(app)

	
	
get(name=None, plugin=None)

	Returns commands, which can be filtered by name or plugin.

	Parameters

	
	name (str) – name of the command

	plugin (instance of GwBasePattern) – plugin object, which registers the commands

	Returns

	None, single command or dict of commands

	
register(command, description, function, params=[], plugin=None)

	Registers a new command, which can be used on a command line interface (cli).

	Parameters

	
	command – Name of the command

	description – Description of the command. Is used as help message on cli

	function – function reference, which gets invoked if command gets called.

	params – list of click options and arguments

	plugin – the plugin, which registered this command

	Returns

	command object

	
start_cli(*args, **kwargs)

	Start the command line interface for the application.

	Parameters

	
	args – arguments

	kwargs – keyword arguments

	Returns

	none

	
unregister(command)

	Unregisters an existing command, so that this command is no longer available on the command line interface.

This function is mainly used during plugin deactivation.

	Parameters

	command – Name of the command

GwSharedObjectsPattern

	
class groundwork.patterns.gw_shared_objects_pattern.GwSharedObjectsPattern(*args, **kwargs)

	Bases: groundwork.patterns.gw_base_pattern.GwBasePattern

Pattern, which provides access to shared object functionality.

Use shared objects to provide access for other plugins to objects, which are created by this plugin.
Or use it to get access to objects provided by other plugins.

Common use cases are stores, which handle business logic and database abstraction. E.g. a user store.

Provided function:

	self.shared_objects.register()

	self.shared_objects.unregister()

	self.shared_objects.get()

	
activate()

	

	
deactivate()

	

	
GwSharedObjectsPattern.shared_objects

	

	
class groundwork.patterns.gw_shared_objects_pattern.SharedObjectsListPlugin(plugin)

	Cares about plugin function for shared objects on plugin level.

The class mainly directs most function calls to the ShareObjectApplication class, which is initiated on
application level.

	
access(name)

	Returns the object of the shared_object, if the given name has been registered.
The search is done on application level, so registered shared objects form other plugins
can be access.

	Parameters

	name – Name of the shared object

	Returns

	object, whatever it may be…

	
get(name=None)

	Returns requested shared objects, which were registered by the current plugin.

If access to objects of other plugins are needed, use access() or perform get on application level:

my_app.shared_objects.get(name="...")

	Parameters

	name (str or None) – Name of a request shared object

	
register(name, description, obj)

	Registers a new shared object.

	Parameters

	
	name (str) – Unique name for shared object

	description (str) – Description of shared object

	obj (any type) – The object, which shall be shared

	
unregister(shared_object)

	Unregisters an already registered shared object.

	Parameters

	shared_object (str) – name of the shared object

	
class groundwork.patterns.gw_shared_objects_pattern.SharedObjectsListApplication(app)

	Cares about shared objects on application level.

	
access(name)

	Returns the object of the shared_object, if the given name has been registered.

Unlike get(), which returns the complete instance of a shared object, including
name, description, plugin, access() returns the object only (without any meta data).

	Parameters

	name – Name of the shared object

	Returns

	object, whatever it may be…

	
get(name=None, plugin=None)

	Returns requested shared objects.

	Parameters

	
	name (str or None) – Name of a request shared object

	plugin (GwBasePattern instance or None) – Plugin, which has registered the requested shared object

	
register(name, description, obj, plugin)

	Registers a new shared object.

	Parameters

	
	name (str) – Unique name for shared object

	description (str) – Description of shared object

	obj (any type) – The object, which shall be shared

	plugin – Plugin, which registers the new shared object

	
unregister(shared_object)

	Unregisters an existing shared object, so that this shared object is no longer available.

This function is mainly used during plugin deactivation.

	Parameters

	shared_object – Name of the shared_object

GwDocumentsPattern

	
class groundwork.patterns.gw_documents_pattern.GwDocumentsPattern(*args, **kwargs)

	Bases: groundwork.patterns.gw_base_pattern.GwBasePattern

Documents can be collected by other Plugins to present their content inside user documentation, online help,
console output or whatever.

Please see Documents for more details.

	
activate()

	Must be overwritten by the plugin class itself.

	
deactivate()

	Must be overwritten by the plugin class itself.

	
documents = None

	Stores an instance of DocumentsListPlugin

	
class groundwork.patterns.gw_documents_pattern.DocumentsListPlugin(plugin)

	Stores and handles documents.

These documents are used for real-time and offline documentation of a groundwork application.

The content of a document must be string, which is can contain jinja and rst syntax.

Plugins, which want to generate a documentation out of all documents, must render this content
(jinja render_template) and transform the rst by the own (e.g. by using rst2html).

Please see Documents for more details.

	
get(name=None)

	

	
register(name, content, description=None)

	Register a new document.

	Parameters

	
	content (str) – Content of this document. Jinja and rst are supported.

	name – Unique name of the document for documentation purposes.

	description – Short description of this document

	
unregister(document)

	

	
class groundwork.patterns.gw_documents_pattern.DocumentsListApplication(app)

	
	
get(document=None, plugin=None)

	Get one or more documents.

	Parameters

	
	document (str) – Name of the document

	plugin (GwBasePattern) – Plugin object, under which the document was registered

	
register(name, content, plugin, description=None)

	Registers a new document.

	Parameters

	
	content (str) – Content of the document

	name – Unique name of the document for documentation purposes.

	plugin (GwBasePattern) – Plugin object, under which the documents where registered

	
unregister(document)

	Unregisters an existing document, so that this document is no longer available.

This function is mainly used during plugin deactivation.

	Parameters

	document – Name of the document

GwThreadsPattern

	
class groundwork.patterns.gw_threads_pattern.GwThreadsPattern(*args, **kwargs)

	Bases: groundwork.patterns.gw_base_pattern.GwBasePattern

Threads can be created and started to perform tasks in the background and in parallel to the main application.

Please see Threads for more details.

	
activate()

	Must be overwritten by the plugin class itself.

	
deactivate()

	Must be overwritten by the plugin class itself.

	
threads = None

	Stores an instance of ThreadsListPlugin

	
class groundwork.patterns.gw_threads_pattern.ThreadsListPlugin(plugin)

	Stores and handles threads.

Please see Threads for more details.

	
get(name=None)

	

	
register(name, function, description=None)

	Register a new thread.

	Parameters

	
	function (function) – Function, which gets called for the new thread

	name – Unique name of the thread for documentation purposes.

	description – Short description of the thread

	
unregister(thread)

	

	
class groundwork.patterns.gw_threads_pattern.ThreadsListApplication(app)

	
	
get(thread=None, plugin=None)

	Get one or more threads.

	Parameters

	
	thread (str) – Name of the thread

	plugin (GwBasePattern) – Plugin object, under which the thread was registered

	
register(name, function, plugin, description=None)

	Registers a new document.

	Parameters

	
	function (function) – Function, which gets called for the new thread

	name – Unique name of the thread for documentation purposes.

	plugin (GwBasePattern) – Plugin object, under which the threads where registered

	description – Short description of the thread

	
unregister(thread)

	Unregisters an existing thread, so that this thread is no longer available.

This function is mainly used during plugin deactivation.

	Parameters

	thread – Name of the thread

	
class groundwork.patterns.gw_threads_pattern.Thread(name, function, plugin, description=None)

	Groundwork thread class. Used to store name, function and plugin.

This information is mostly used to generated overviews about registered threads.

	Parameters

	
	name (str) – Name of the thread

	function (function) – Function, which gets called inside the thread

	plugin (GwBasePattern) – The plugin, which registered this thread

	description – short description of this thread

	
response = None

	Stores the function return value, if thread has finished

	
run(**kwargs)

	Runs the thread

	Parameters

	kwargs – dictionary of keyword arguments

	Returns

	

	
running = None

	True, if thread is running. Otherwise its False.

	
thread = None

	Thread base class. Type is threading.Thread

	
time_end = None

	datetime object of the ending moment

	
time_start = None

	datetime object of the starting moment

	
class groundwork.patterns.gw_threads_pattern.ThreadWrapper(thread)

	Wrapper class, which inherits from threading.Thread and performs some useful tasks
before and after the provided functions gets executed.

	
run(**kwargs)

	

GwRecipePattern

Groundwork recipe pattern.

Provides function to register, get and build recipes.

Recipes are used create directories and files based on a given template and some user input.
It is mostly used to speed up the set up of new python packages, groundwork applications or projects.

Based on cookiecutter: https://github.com/audreyr/cookiecutter/

	
class groundwork.patterns.gw_recipes_pattern.GwRecipesPattern(*args, **kwargs)

	
	
activate()

	Must be overwritten by the plugin class itself.

	
deactivate()

	Must be overwritten by the plugin class itself.

	
recipes = None

	Stores an instance of RecipesListPlugin

	
class groundwork.patterns.gw_recipes_pattern.RecipesListPlugin(plugin)

	Cares about the recipe management on plugin level.
Allows to register, get and build recipes in the context of the current plugin.

	Parameters

	plugin – plugin, which shall be used as contxt.

	
build(recipe)

	Builds a recipe

	Parameters

	recipe – Name of the recipe to build.

	
get(name=None)

	Gets a list of all recipes, which are registered by the current plugin.
If a name is provided, only the requested recipe is returned or None.

	Param

	name: Name of the recipe

	
register(name, path, description, final_words=None)

	Registers a new recipe in the context of the current plugin.

	Parameters

	
	name – Name of the recipe

	path – Absolute path of the recipe folder

	description – A meaningful description of the recipe

	final_words – A string, which gets printed after the recipe was build.

	
unregister(recipe)

	Unregister a recipe of the current plugin.

	Parameters

	recipe – Name of the recipe.

	
class groundwork.patterns.gw_recipes_pattern.RecipesListApplication(app)

	Cares about the recipe management on application level.
Allows to register, get and build recipes.

	Parameters

	app – groundwork application instance

	
build(recipe, plugin=None)

	Execute a recipe and creates new folder and files.

	Parameters

	
	recipe – Name of the recipe

	plugin – Name of the plugin, to which the recipe must belong.

	
get(recipe=None, plugin=None)

	Get one or more recipes.

	Parameters

	
	recipe (str) – Name of the recipe

	plugin (GwBasePattern) – Plugin object, under which the recipe was registered

	
register(name, path, plugin, description=None, final_words=None)

	Registers a new recipe.

	
unregister(recipe)

	Unregisters an existing recipe, so that this recipe is no longer available.

This function is mainly used during plugin deactivation.

	Parameters

	recipe – Name of the recipe

	
class groundwork.patterns.gw_recipes_pattern.Recipe(name, path, plugin, description='', final_words='')

	A recipe is an existing folder, which will be handled by the underlying cookiecutter library as template folder.

	Parameters

	
	name – Name of the recipe

	path – Absolute path to the recipe folder

	plugin – Plugin which registers the recipe

	description – Meaningful description of the recipe

	final_words – String, which gets printed after a recipe was successfully build.

	
build(output_dir=None, **kwargs)

	Buildes the recipe and creates needed folder and files.
May ask the user for some parameter inputs.

	Parameters

	output_dir – Path, where the recipe shall be build. Default is the current working directory

	Returns

	location of the installed recipe

Plugins

GwDocumentsInfo

	
class groundwork.plugins.gw_documents_info.GwDocumentsInfo(*args, **kwargs)

	Bases: groundwork.patterns.gw_commands_pattern.GwCommandsPattern, groundwork.patterns.gw_documents_pattern.GwDocumentsPattern

Provides a little documentation viewer for all registered documents.
Accessible via app doc.

Presents also an overview about all registered documents of an application.
Accessible via app doc_list.

GwPluginInfo

	
class groundwork.plugins.gw_plugins_info.GwPluginsInfo(*args, **kwargs)

	Bases: groundwork.patterns.gw_commands_pattern.GwCommandsPattern, groundwork.patterns.gw_documents_pattern.GwDocumentsPattern

Collects information about plugins, which are registered at the current application.

Collected information are accessible via command line or via a generated document during
documentation generation (Additional plugin needed)

GwSignalInfo

	
class groundwork.plugins.gw_signals_info.GwSignalsInfo(*args, **kwargs)

	Bases: groundwork.patterns.gw_commands_pattern.GwCommandsPattern, groundwork.patterns.gw_documents_pattern.GwDocumentsPattern

GwCommandslInfo

	
class groundwork.plugins.gw_commands_info.GwCommandsInfo(*args, **kwargs)

	Bases: groundwork.patterns.gw_documents_pattern.GwDocumentsPattern, groundwork.patterns.gw_commands_pattern.GwCommandsPattern

Provides documents for giving an overview about registered commands.

GwRecipesBuilder

	
class groundwork.plugins.gw_recipes_builder.GwRecipesBuilder(*args, **kwargs)

	Bases: groundwork.patterns.gw_commands_pattern.GwCommandsPattern, groundwork.patterns.gw_recipes_pattern.GwRecipesPattern

Provides commands for listing and building recipes via command line interface.

Provided commands:

	recipe_list

	recipe_build

Provides also the recipe gw_package, which can be used to setup a groundwork related python package.
Content of the package:

	setup.py: Preconfigured and ready to use.

	groundwork package structure: Directories for applications, patterns, plugins and recipes.

	Simple, runnable example of a groundwork application and plugins.

	usable test, supported by py.test and tox.

	expandable documentation, supported by sphinx and the groundwork sphinx template.

	.gitignore

This code is hardly based on Cookiecutter’s main.py file:
https://github.com/audreyr/cookiecutter/blob/master/cookiecutter/main.py

Changelog

0.1.13

Minor update, no functional changes

	added Python 3.3 support to Tox and Travis

	added test cases for logging

	added test cases for click integration

	some fixes in the documentation

0.1.12

Start of the change log.

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 groundwork	

 	
 	
 groundwork.patterns.gw_base_pattern	

 	
 	
 groundwork.patterns.gw_recipes_pattern	

 	
 	
 groundwork.pluginmanager	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | G
 | I
 | L
 | N
 | P
 | R
 | S
 | T
 | U

_

 	
 	_configure_logging() (groundwork.App method)

 	
 	_get_plugins_by_entry_points() (groundwork.pluginmanager.PluginClassManager method)

 	_register_initialisation() (groundwork.pluginmanager.PluginManager method)

A

 	
 	access() (groundwork.patterns.gw_shared_objects_pattern.SharedObjectsListApplication method)

 	(groundwork.patterns.gw_shared_objects_pattern.SharedObjectsListPlugin method)

 	activate() (groundwork.patterns.gw_base_pattern.GwBasePattern method)

 	(groundwork.patterns.gw_commands_pattern.GwCommandsPattern method)

 	(groundwork.patterns.gw_documents_pattern.GwDocumentsPattern method)

 	(groundwork.patterns.gw_recipes_pattern.GwRecipesPattern method)

 	(groundwork.patterns.gw_shared_objects_pattern.GwSharedObjectsPattern method)

 	(groundwork.patterns.gw_threads_pattern.GwThreadsPattern method)

 	(groundwork.pluginmanager.PluginManager method)

 	
 	App (class in groundwork)

 	app (groundwork.patterns.gw_base_pattern.GwBasePattern attribute)

B

 	
 	build() (groundwork.patterns.gw_recipes_pattern.Recipe method)

 	(groundwork.patterns.gw_recipes_pattern.RecipesListApplication method)

 	(groundwork.patterns.gw_recipes_pattern.RecipesListPlugin method)

C

 	
 	classes (groundwork.pluginmanager.PluginManager attribute)

 	commands (groundwork.patterns.gw_commands_pattern.GwCommandsPattern attribute)

 	CommandsListApplication (class in groundwork.patterns.gw_commands_pattern)

 	CommandsListPlugin (class in groundwork.patterns.gw_commands_pattern)

 	Config (class in groundwork.configuration.configmanager)

 	
 	config (groundwork.App attribute)

 	(groundwork.configuration.configmanager.ConfigManager attribute)

 	ConfigManager (class in groundwork.configuration.configmanager)

 	connect() (groundwork.patterns.gw_base_pattern.SignalsPlugin method)

 	(groundwork.signals.SignalsApplication method)

D

 	
 	deactivate() (groundwork.patterns.gw_base_pattern.GwBasePattern method)

 	(groundwork.patterns.gw_commands_pattern.GwCommandsPattern method)

 	(groundwork.patterns.gw_documents_pattern.GwDocumentsPattern method)

 	(groundwork.patterns.gw_recipes_pattern.GwRecipesPattern method)

 	(groundwork.patterns.gw_shared_objects_pattern.GwSharedObjectsPattern method)

 	(groundwork.patterns.gw_threads_pattern.GwThreadsPattern method)

 	(groundwork.pluginmanager.PluginManager method)

 	
 	disconnect() (groundwork.patterns.gw_base_pattern.SignalsPlugin method)

 	(groundwork.signals.SignalsApplication method)

 	documents (groundwork.patterns.gw_documents_pattern.GwDocumentsPattern attribute)

 	DocumentsListApplication (class in groundwork.patterns.gw_documents_pattern)

 	DocumentsListPlugin (class in groundwork.patterns.gw_documents_pattern)

E

 	
 	exist() (groundwork.pluginmanager.PluginClassManager method)

 	(groundwork.pluginmanager.PluginManager method)

G

 	
 	get() (groundwork.configuration.configmanager.Config method)

 	(groundwork.patterns.gw_base_pattern.SignalsPlugin method)

 	(groundwork.patterns.gw_commands_pattern.CommandsListApplication method)

 	(groundwork.patterns.gw_commands_pattern.CommandsListPlugin method)

 	(groundwork.patterns.gw_documents_pattern.DocumentsListApplication method)

 	(groundwork.patterns.gw_documents_pattern.DocumentsListPlugin method)

 	(groundwork.patterns.gw_recipes_pattern.RecipesListApplication method)

 	(groundwork.patterns.gw_recipes_pattern.RecipesListPlugin method)

 	(groundwork.patterns.gw_shared_objects_pattern.SharedObjectsListApplication method)

 	(groundwork.patterns.gw_shared_objects_pattern.SharedObjectsListPlugin method)

 	(groundwork.patterns.gw_threads_pattern.ThreadsListApplication method)

 	(groundwork.patterns.gw_threads_pattern.ThreadsListPlugin method)

 	(groundwork.pluginmanager.PluginClassManager method)

 	(groundwork.pluginmanager.PluginManager method)

 	(groundwork.signals.SignalsApplication method)

 	get_receiver() (groundwork.patterns.gw_base_pattern.SignalsPlugin method)

 	(groundwork.signals.SignalsApplication method)

 	
 	groundwork (module)

 	groundwork.patterns.gw_base_pattern (module)

 	groundwork.patterns.gw_recipes_pattern (module)

 	groundwork.pluginmanager (module)

 	GwBasePattern (class in groundwork.patterns.gw_base_pattern)

 	GwCommandsInfo (class in groundwork.plugins.gw_commands_info)

 	GwCommandsPattern (class in groundwork.patterns.gw_commands_pattern)

 	GwCommandsPattern.commands (in module groundwork.patterns.gw_commands_pattern)

 	GwDocumentsInfo (class in groundwork.plugins.gw_documents_info)

 	GwDocumentsPattern (class in groundwork.patterns.gw_documents_pattern)

 	GwPluginsInfo (class in groundwork.plugins.gw_plugins_info)

 	GwRecipesBuilder (class in groundwork.plugins.gw_recipes_builder)

 	GwRecipesPattern (class in groundwork.patterns.gw_recipes_pattern)

 	GwSharedObjectsPattern (class in groundwork.patterns.gw_shared_objects_pattern)

 	GwSharedObjectsPattern.shared_objects (in module groundwork.patterns.gw_shared_objects_pattern)

 	GwSignalsInfo (class in groundwork.plugins.gw_signals_info)

 	GwThreadsPattern (class in groundwork.patterns.gw_threads_pattern)

I

 	
 	initialise() (groundwork.pluginmanager.PluginManager method)

 	
 	initialise_by_names() (groundwork.pluginmanager.PluginManager method)

 	is_active() (groundwork.pluginmanager.PluginManager method)

L

 	
 	load() (groundwork.configuration.configmanager.ConfigManager method)

 	
 	log (groundwork.App attribute)

 	(groundwork.patterns.gw_base_pattern.GwBasePattern attribute)

N

 	
 	name (groundwork.App attribute)

 	
 	needed_plugins (groundwork.patterns.gw_base_pattern.GwBasePattern attribute)

P

 	
 	path (groundwork.App attribute)

 	PluginClassManager (class in groundwork.pluginmanager)

 	
 	PluginManager (class in groundwork.pluginmanager)

 	plugins (groundwork.App attribute)

R

 	
 	Receiver (class in groundwork.signals)

 	receivers (groundwork.signals.SignalsApplication attribute)

 	Recipe (class in groundwork.patterns.gw_recipes_pattern)

 	recipes (groundwork.patterns.gw_recipes_pattern.GwRecipesPattern attribute)

 	RecipesListApplication (class in groundwork.patterns.gw_recipes_pattern)

 	RecipesListPlugin (class in groundwork.patterns.gw_recipes_pattern)

 	register() (groundwork.patterns.gw_base_pattern.SignalsPlugin method)

 	(groundwork.patterns.gw_commands_pattern.CommandsListApplication method)

 	(groundwork.patterns.gw_commands_pattern.CommandsListPlugin method)

 	(groundwork.patterns.gw_documents_pattern.DocumentsListApplication method)

 	(groundwork.patterns.gw_documents_pattern.DocumentsListPlugin method)

 	(groundwork.patterns.gw_recipes_pattern.RecipesListApplication method)

 	(groundwork.patterns.gw_recipes_pattern.RecipesListPlugin method)

 	(groundwork.patterns.gw_shared_objects_pattern.SharedObjectsListApplication method)

 	(groundwork.patterns.gw_shared_objects_pattern.SharedObjectsListPlugin method)

 	(groundwork.patterns.gw_threads_pattern.ThreadsListApplication method)

 	(groundwork.patterns.gw_threads_pattern.ThreadsListPlugin method)

 	(groundwork.pluginmanager.PluginClassManager method)

 	(groundwork.signals.SignalsApplication method)

 	
 	register_class() (groundwork.pluginmanager.PluginClassManager method)

 	response (groundwork.patterns.gw_threads_pattern.Thread attribute)

 	run() (groundwork.patterns.gw_threads_pattern.Thread method)

 	(groundwork.patterns.gw_threads_pattern.ThreadWrapper method)

 	running (groundwork.patterns.gw_threads_pattern.Thread attribute)

S

 	
 	send() (groundwork.patterns.gw_base_pattern.SignalsPlugin method)

 	(groundwork.signals.SignalsApplication method)

 	set() (groundwork.configuration.configmanager.Config method)

 	SharedObjectsListApplication (class in groundwork.patterns.gw_shared_objects_pattern)

 	SharedObjectsListPlugin (class in groundwork.patterns.gw_shared_objects_pattern)

 	Signal (class in groundwork.signals)

 	
 	signals (groundwork.App attribute)

 	(groundwork.patterns.gw_base_pattern.GwBasePattern attribute)

 	(groundwork.signals.SignalsApplication attribute)

 	SignalsApplication (class in groundwork.signals)

 	SignalsPlugin (class in groundwork.patterns.gw_base_pattern)

 	start_cli() (groundwork.patterns.gw_commands_pattern.CommandsListApplication method)

T

 	
 	Thread (class in groundwork.patterns.gw_threads_pattern)

 	thread (groundwork.patterns.gw_threads_pattern.Thread attribute)

 	threads (groundwork.patterns.gw_threads_pattern.GwThreadsPattern attribute)

 	ThreadsListApplication (class in groundwork.patterns.gw_threads_pattern)

 	
 	ThreadsListPlugin (class in groundwork.patterns.gw_threads_pattern)

 	ThreadWrapper (class in groundwork.patterns.gw_threads_pattern)

 	time_end (groundwork.patterns.gw_threads_pattern.Thread attribute)

 	time_start (groundwork.patterns.gw_threads_pattern.Thread attribute)

U

 	
 	unregister() (groundwork.patterns.gw_commands_pattern.CommandsListApplication method)

 	(groundwork.patterns.gw_commands_pattern.CommandsListPlugin method)

 	(groundwork.patterns.gw_documents_pattern.DocumentsListApplication method)

 	(groundwork.patterns.gw_documents_pattern.DocumentsListPlugin method)

 	(groundwork.patterns.gw_recipes_pattern.RecipesListApplication method)

 	(groundwork.patterns.gw_recipes_pattern.RecipesListPlugin method)

 	(groundwork.patterns.gw_shared_objects_pattern.SharedObjectsListApplication method)

 	(groundwork.patterns.gw_shared_objects_pattern.SharedObjectsListPlugin method)

 	(groundwork.patterns.gw_threads_pattern.ThreadsListApplication method)

 	(groundwork.patterns.gw_threads_pattern.ThreadsListPlugin method)

 	(groundwork.signals.SignalsApplication method)

gwTheme Sphinx Style

This repository contains sphinx styles, which are use by most groundwork related projects.
It is a drivative of Kenneth Reitz’s themes for his projects and of Mitsuhiko’s themes for Flask and Flask related
projects. To use this style in your Sphinx documentation, follow this guide:

	put this folder as _themes into your docs folder. Alternatively
you can also use git submodules to check out the contents there.

	add this to your conf.py:

sys.path.append(os.path.abspath('_themes'))
html_theme_path = ['_themes']
html_theme = 'gw'

The following themes exist:

	gw

	the standard groundwork documentation theme for any kind of projects

Configuration

The gwTheme provides the following configuration parameters:

	contribute: If True, a contribute-area with github-buttons is shown inside the sidebar

	github_user: Used the for github follow button. E.g.: useblocks

	github_fork: Used for the github fork buttons. E.g.: useblocks/groundwork

You can change their value inside the file conf.py of your sphinx project:

html_theme_options = {
 "contribute": True,
 "github_fork": "useblocks/groundwork",
 "github_user": "useblocks",
}

Screenshot

[image: screenshot of groundwork sphinx theme]

 nav.xhtml

 Table of Contents

 		
 Welcome to groundwork

 		
 Foreword

 		
 Challenges

 		
 Goals

 		
 A plugin bundles everything

 		
 Injections

 		
 Realtime documentation

 		
 Technical background

 		
 Installation

 		
 System-wide installation

 		
 Virtual environment

 		
 Quickstart

 		
 Applications

 		
 Create an app

 		
 Run an app

 		
 Plugins

 		
 Activate registered plugins

 		
 Create own plugins

 		
 Patterns

 		
 Using patterns

 		
 Writing patterns

 		
 Architecture

 		
 Definitions

 		
 Application

 		
 Plugin

 		
 Pattern

 		
 Example

 		
 Code examples

 		
 Application

 		
 Configuration

 		
 Plugin registration

 		
 Packaged plugins

 		
 Registration of own plugins

 		
 Plugin activation

 		
 Plugin deactivation

 		
 Handling errors

 		
 Logging

 		
 Configuration

 		
 Plugins

 		
 Registration

 		
 Activation and Deactivation

 		
 Development of own plugins

 		
 Provided variables

 		
 Using signals and receivers

 		
 Using patterns

 		
 Logging

 		
 Plugin dependencies

 		
 Patterns

 		
 Using patterns

 		
 Developing own patterns

 		
 Logging

 		
 Signals and Receivers

 		
 Use case: User creation

 		
 Working with signals

 		
 Register a signal

 		
 Send a signal

 		
 Signals installed by groundwork

 		
 Working with receivers

 		
 Register a receiver

 		
 Unregister a receiver

 		
 Signals and receivers on application level

 		
 Commands

 		
 Starting the CLI

 		
 Registering commands

 		
 Using arguments and options

 		
 Unregister a command

 		
 Shared Objects

 		
 Registration

 		
 Get/Access a shared object

 		
 Unregister

 		
 Documents

 		
 Live example

 		
 Registration

 		
 Unregister document

 		
 Using Jinja and RST

 		
 Jinja

 		
 rst

 		
 Developing a document viewer

 		
 Step 1: Render Jinja

 		
 Step 2: Transform rst

 		
 Sphinx support

 		
 Threads

 		
 Registering threads

 		
 Thread status and response

 		
 Recipes

 		
 Workflow

 		
 List available recipes

 		
 recipe gw_package

 		
 Building/Execute a recipe

 		
 Creating own recipes

 		
 Registration

 		
 Structure

 		
 cookiecutter.json

 		
 Using Jinja

 		
 Packaging and Installation

 		
 Create a package

 		
 entry_points

 		
 Package structure

 		
 Install a package

 		
 Local packages

 		
 PyPi

 		
 Additional Packages for groundwork

 		
 groundwork-database

 		
 groundwork-web

 		
 Contribute

 		
 Running tests

 		
 pytest and Flake8

 		
 pytest and exception chains

 		
 Deviations from common standards

 		
 Documentation

 		
 groundwork sphinx theme

 		
 API

 		
 Application Object

 		
 SignalsApplication

 		
 Configuration

 		
 ConfigManager

 		
 Config

 		
 PluginManagers

 		
 PluginManager

 		
 PluginClassManager

 		
 Plugin Patterns

 		
 GwBasePattern

 		
 GwCommandPattern

 		
 GwSharedObjectsPattern

 		
 GwDocumentsPattern

 		
 GwThreadsPattern

 		
 GwRecipePattern

 		
 Plugins

 		
 GwDocumentsInfo

 		
 GwPluginInfo

 		
 GwSignalInfo

 		
 GwCommandslInfo

 		
 GwRecipesBuilder

 		
 Changelog

 		
 0.1.13

 		
 0.1.12

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/groundwork_architecture.png
Database Email

Connection Sending
Weather Data User Account Error
Storage Handling Monitoring

L

Weather Web Service

_static/gw_slogan.png
sroundwork

-

_static/gw_slogan_white.png
groundwork

Stop starting from scratch

_static/gw_logo.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_images/screenshot.png
groundwork

groundwork is a plugin framework for Python.

It enables an application to activate and deactivate plugins during runtime and to control dynamic plugin
behaviors like plugin status, used signals, registered commands and much more.

Table Of Contents
S ™ Thefunctionality of a plugin can be easily extended by the usage of inheritable patterns. Therefore
groundwork groundwork supports developers with time-saving out-of-the box solutions for own plugins:
= Example
=ty « Registration of commands for command line interfaces.
o Aol e + Registration for signals and receivers for loose inter-plugin communication.

+ Registration of shared objects to provide and request any kind of shared content.
Related Topics + Registration of static and dynamic documents for documentation purposes.
Documentation overview
+ Next: Foreword Example
This Page The following code creates a groundwork app and a single plugin.:
Show Source

from groundwork import GwApp
from groundwork.patterns import GwCommandsPattern, GwSignalsPattern

Quick search
class MyPlugin(GwCommandsPattern, GwSignalsPattern):

def _init (self, *args, **kwargs):
Self.name = "My first plugin”

super()._init_(+args, **kwargs)

def activate(self):
self.conmands. register(name="hello",
description='prints “hello
function=self.greetings)

e,

self.signals. register(signal='hi",
description='Say "hi" to all interested plugins')

self.signals. connect (receive

hi receiver',

signal='h1",
function=self.greetings,
description='prints "Hello world" ')

def greetings(self):
print("Hello wor’

i)

if _name_ = " main_":
my_app = GwApp('my config.py’)
my_app.load_plugins (MyPlugin)
my_app.signals.send(i)

my_app. cLi()

%

On a command line the following commands may be used:

python my app.py hello

python my_app.py
python my app.yp hello -h

User’s Guide

« Foreword
Installation
Quickstart
Tutorial

« Communication

_images/groundwork_architecture.png
Database Email

Connection Sending
Weather Data User Account Error
Storage Handling Monitoring

L

Weather Web Service

_images/gw_slogan.png
sroundwork

-

